

Université Gaston Berger de Saint-Louis

Résolution numérique de systèmes linéaires Méthodes itératives

Pr. Ousmane THIARE

http://www.ousmanethiare.com

May 10, 2024

Méthodes itératives

Méthodes itératives

Suite de vecteurs et de matrices

Définition 4.1

Soit V un espace vectoriel muni d'une norme $\|\cdot\|$, on dit qu'une suite (v_k) d'éléments de V converge vers un élément $v \in V$, si

$$\lim_{k\to\infty} \lVert v_k - v\rVert = 0$$

et on écrit

$$v = \lim_{k \to \infty} v_k$$

Remarque 4.1

Sur un espace vectoriel de dimension finie, toutes les normes sont équivalentes. Donc v_k tend vers v si et seulement si $||v_k - v||$ tend vers v pour une norme.

Suite de vecteurs et de matrices

Théorème 4.1

1. Soit $\|\cdot\|$ une norme matricielle subordonnée, et $\mathbb B$ une matrice vérifiant

$$\|\mathbb{B}\| < 1$$

Alors la matrice $(\mathbb{I} + \mathbb{B})$ est inversible, et

$$\|(\mathbb{I}+\mathbb{B})^{-1}\|\leq rac{1}{1-\|\mathbb{B}\|}$$

2. Si une matrice de la forme $(\mathbb{I} + \mathbb{B})$ est singulière, alors nécessairement

$$\|\mathbb{B}\| \geq 1$$

pour toute norme matricielle, subordonnée ou non.

Suite de vecteurs et de matrices

Théorème 4.2

Soit $\ensuremath{\mathbb{B}}$ une matrice carrée. Les conditions suivantes sont équivalentes .

- 1. $\lim_{k\to\infty} \mathbb{B}^k = 0$
- 2. $\lim_{k\to\infty} \mathbb{B}^k v = 0$ pour tout vecteur v
- 3. $\rho(\mathbb{B}) < 1$
- 4. $\|\mathbb{B}\| < 1$ pour au moins une norme matricielle subordonnée $\|\cdot\|$

Théorème 4.3

Soit $\mathbb B$ une matrice carrée, et $\|\cdot\|$ une norme matricielle quelconque. Alors

$$\lim_{k o \infty} \lVert \mathbb{B}^k \rVert^{rac{1}{k}} =
ho(\mathbb{B})$$

Méthodes itératives

Soit $\mathbb{A} \in \mathcal{M}_n(\mathbb{K})$ une matrice régulière et $\mathbf{b} \in \mathbb{K}^n$. Il s'agit de résoudre le système $\mathbb{A}\mathbf{x} = \mathbf{b}$ par une méthode itérative, c'est-à-dire de créer une suite \mathbf{x}^k qui converge vers \mathbf{x} . On note $\mathbb{D} = diag(\mathbb{A}), \mathbb{E}$ la matrice triangulaire inférieure vérifiant

$$\begin{cases}
e_{ij} = 0, & i \leq j \\
e_{ij} = -a_{ij}, & i > j
\end{cases}$$

et ${\mathbb F}$ la matrice triangulaire supérieure vérifiant

$$\begin{cases}
f_{ij} = 0, & i \ge j \\
f_{ij} = -a_{ij}, & i > j
\end{cases}$$

On a alors

$$\mathbb{A} = \begin{pmatrix} \ddots & & -\mathbb{F} \\ & \mathbb{D} & \\ -\mathbb{E} & & \ddots \end{pmatrix} = \mathbb{D} - \mathbb{E} - \mathbb{F}$$

Méthode de Jacobi

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1, j \neq i}^n a_{ij} x_j^{(k)} \right) \forall i \in \{1, \cdots, n\}$$

Méthode de Gauss-Seidel

$$x_i^{(k+1)} = \frac{1}{a_{ii}} \left(b_i - \sum_{j=1}^n a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^n a_{ij} x_j^{(k)} \right) \forall i \in \{1, \cdots, n\}$$

Méthode de relaxation

$$x_i^{(k+1)} = \omega \hat{x}_i^{(k+1)} + (1 - \omega) x_i^{(k)}$$

où $\hat{x}_i^{(k+1)}$ est obtenu à partir de $x^{(k)}$ par l'une des deux méthodes précédentes.

Avec la méthode de Jacobi

$$x_i^{(k+1)} = \frac{\omega}{a_{ii}} \left(b_i - \sum_{j=1, j \neq i}^n a_{ij} x_j^{(k)} \right) + (1-\omega) x_i^{(k)} \forall i \in \{1, \cdots, n\}$$

Avec la méthode de Gauss-Seidel

$$x_i^{(k+1)} = \frac{w}{a_{ii}} \left(b_i - \sum_{j=1}^n a_{ij} x_j^{(k+1)} - \sum_{j=i+1}^n a_{ij} x_j^{(k)} \right) + (1-\omega) x_i^{(k)} \forall i \in \{1, \cdots, m\}$$

Cette méthode de relaxation est appelée méthode S.O.R. (successive over relaxation) Toutes ces méthodes se mettent sous la forme

$$Mx^{k+1} = Nx^k + b$$

avec

Jacobi	M = D	N = E + F
Gauss-Seidel	M = D - E	N = F
SOR	$M = \frac{1}{\omega}D - E$	$N = \frac{1 - \omega}{\omega} D + F$

Programmation d'une étape de l'algorithme de Jacobi :

<u>Test d'arrêt</u>: on définit le résidu à l'étape k comme $r^{(k)} = b - Ax^{(k)}$. Le test s'écrit : tant que $||r^{(k)}|| > eps$, on continue.

Méthodes itératives

Résultats généraux de convergence

Soit donc l'algorithme

$$Mx^{k+1} = Nx^k + b$$

avec M-N=A. Si la suite converge, elle converge vers la solution x de Ax=b, et l'erreur $e^{(k)}=x^{(k)}-x$ est solution de $Me^{(k+1)}=Ne^{(k)}$. On note $B=M^{-1}N$. D'après le théorème 4.2, on a

Théorème 4.4

La suite $x^{(k)}$ converge pour toute donnée initiale x^0 si et seulement si $\rho(\mathbb{B}) < 1$, si et seulement si $\|\mathbb{B}\| < 1$ pour au moins une norme matricielle subordonnée $\|\cdot\|$.

Résultats généraux de convergence

Il est d'usage d'affecter les noms suivants aux matrices des méthodes précédentes

Lemme 4.1

Pour tout $\omega \neq 0$, on a $\rho(\mathcal{L}_{\omega}) \geq |\omega - 1|$.

Résultats généraux de convergence

On en déduit par le théorème 4.4,

Théorème 4.5

Si la méthode de relaxation converge pour toute donnée initiale, on a

$$0 < \omega < 2$$

On définit le taux de convergence asymptotique par

$$R(B) = -In\rho(B)$$

Théorème 4.6

Le nombre d'itérations nécessaires pour réduire l'erreur d'un facteur ϵ est au moins égal à $K=\frac{-\ln\epsilon}{R(B)}$

Méthodes itératives

Cas des matrices hermitiennes

Théorème 4.7

Soit A une matrice hermitienne définie positive, A=M-N, où M est inversible. Si $M+N^*$ (qui est toujours hermitienne), est définie positive, la méthode itérative converge pour toute donnée initiale.

Corollaire 4.1

Soit A une matrice hermitienne définie positive. Si $\omega \in]0,2[$, la méthode de relaxation converge pour toute donnée initiale.

Méthodes itératives

Cas des matrices tridiagonales

Théorème 4.8

Soit A une matrice tridiagonale. Alors $\rho(\mathcal{L}_1) = (\rho(J))^2$: les méthodes de Jacobi et Gauss-Seidel convergent ou divergent simultanément. Si elles convergent, la méthode de Gauss-Seidel est la plus rapide.

Théorème 4.9

Soit A une matrice tridiagonale telles que les valeurs propres de J soient réelles. Alors les méthodes de Jacobi et de relaxation convergent ou divergent simultanément pour $\omega \in]0,2[$. Si elles convergent, la fonction

$$\omega\mapsto
ho(\mathcal{L}_\omega)$$
 a l'allure suivante : avec $\omega^*=rac{2}{1+\sqrt{1-(
ho(J))^2}}$

Cas des matrices tridiagonales

Remarque 4.2

On ne connaît pas précisément ce ω^* si on ne connaît pas $\rho(J)$. Dans ce cas, le graphe ci-dessus montre que qu'il vaut mieux choisir ω trop grand que trop petit.

Méthodes itératives

Matrices à diagonale dominante

Théorème 4.10

Soit A une matrice à diagonale strictement dominante ou irréductible à diagonale dominante. Alors la méthode de Jacobi converge.

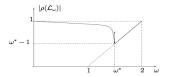


Figure: variation de \mathcal{L}_{ω} en fonction de ω

Théorème 4.11

Soit A une matrice à diagonale strictement dominante ou irréductible à diagonale dominante. Si $0 < \omega \le 1$, la méthode de relaxation converge.

Méthodes itératives

La matrices du laplacien

$$A_n = \left(\begin{array}{cccc} 2 & -1 & 0 \\ -1 & 2 & -1 \\ & \ddots & \ddots & \ddots \\ & & -1 & 2 & -1 \\ & 0 & -1 & 2 \end{array}\right)$$

On a

$$\begin{split} \rho(J) &= 1 - \frac{\pi^2}{2n^2} + \mathcal{O}(n^{-4}), \\ \rho(\mathcal{L}_1) &= 1 - \frac{\pi^2}{n^2} + \mathcal{O}(n^{-4}), \\ \omega^* &= 2(1 - \frac{\pi}{n} + \mathcal{O}(n^{-2})), \\ \rho(\mathcal{L}_{\omega^*}) &= \omega^* - 1 == 1 - \frac{2\pi}{n} + \mathcal{O}(n^{-2}). \end{split}$$

La matrices du laplacien

Pour n=100, pour obtenir une erreur de $\epsilon = 10^{-1}$, on doit faire

- 9342 itérations de l'algorithme de Jacobi,
- 4671 itérations de l'algorithme de Gauss-Seidel,
- 75 itérations de l'algorithme de l'algorithme de relaxation optimale.

Méthodes itératives

Complexité

Supposons la matrice A pleine. La complexité d'une itération est d'environ $2n^2$. Si l'on fait au moins n itérations, on a donc une complexité totale de $2n^3$, à comparer aux $2n^3/3$ de la méthode de Gauss.

Pour résoudre un système linéaire, on préférera les méthodes directes dans le cas des matrices pleines, et les méthodes itératives dans le cas des matrices creuses.