
African University of Science and Technology

Time, clocks and ordering of events

Pr. Ousmane THIARE

http://www.ousmanethiare.com

August 18, 2014

Outline

Modeling Distributed Executions
Happen-Before
Global states and cuts

Global predicate evaluation
Problem Definition
Example: deadlock detection

Real clocks vs logical clocks
Logical clocks
Scalar logical clocks
Vector logical clocks

Passive monitoring
Passive monitoring, v.1
Passive monitoring, v.2
Passive monitoring, v.3

�� ��2 on 73

Modeling Distributed Executions

Distributed Execution

Definition (Distributed algorithm)

A distributed algorithm is a collection of distributed automata, one
per process

Definition (Distributed execution)

The execution of a distributed algorithm is a sequence of events ex-
ecuted by the processes

� Partial execution: a finite sequence of events

� Infinite execution: a infinite sequence of events

Possible events

� send(m,p): sends a message m to process p

� receive(m): receives a message m

� local events that change the local state �� ��3 on 73

Modeling Distributed Executions

Histories

Definition (Local History)

The local history of process pi is a (possibly infinite) sequence of events
hi = e0

i e
1
i e

2
i · · · e

mi
i (canonical enumeration)

Definition (Partial history)

The partial history up to event eki is denoted hki and is given by the
prefix of the first k events of hi

�� ��4 on 73

Modeling Distributed Executions

Histories

� Local histories do not specify any relative timing between events
belonging to different processes.

� We need a notion of ordering between events, that could help us in
deciding whether:
� one event occurs before another
� they are actually concurrent

�� ��5 on 73

Modeling Distributed Executions Happen-Before

Outline

Modeling Distributed Executions
Happen-Before
Global states and cuts

Global predicate evaluation

Real clocks vs logical clocks

Passive monitoring

�� ��6 on 73

Modeling Distributed Executions Happen-Before

Happen-Before

Definition (Happen-before)

We say that an event e happens-before an event e’, and write e −→ e ′,
if one of the following three cases is true:

� ∃pi ∈
∏

: e = eri , e
′ = esi , r < s

(if e and e’ are executed by the same process, e before e’)

� e=send(m)∧ e’=receive(m)
(if e is the send event of a message m and e’ is the corresponding
receive event)

� ∃e ′′ : e −→ e ′′ −→ e ′

(in other words, −→ is transitive)

�� ��7 on 73

Modeling Distributed Executions Happen-Before

Happen-Before

Space-Time Diagram of a Distributed Computation

	

�� ��8 on 73

Modeling Distributed Executions Happen-Before

Happen-Before

Meaning of Happen-Before)

If e −→ e ′, this means that we can find a series of events e1e2e3 · · · en,
where e1 = e and en = e ′, such that for each pair of consecutive events
e i and e i+1:

� e i and e i+1 are executed on the same process, in this order

� e i = send(m) and e i+1 = receive(m)

Notes:

� happen-before captures the concept of potential causal ordering

� happen-before captures a flow of data between two events.

� Two events e, e’ that are not related by the happen-before relation
(e 6−→ e ′ ∧ e ′ 6−→ e) are concurrent, and we write e||e ′.

�� ��9 on 73

Modeling Distributed Executions Global states and cuts

Outline

Modeling Distributed Executions
Happen-Before
Global states and cuts

Global predicate evaluation

Real clocks vs logical clocks

Passive monitoring

�� ��10 on 73

Modeling Distributed Executions Global states and cuts

Global States

Definition (Local state)

� The local state of process pi after the execution of event eki is
denoted σki

� The local state contains all data items accessible by that process

� Local state is completely private to the process

� σ0
i is the initial state of process pi

Definition (Global state)

The global state of a distributed computation is an n-tuple of local
states Σ = (σ1, · · · , σn), one for each process.

�� ��11 on 73

Modeling Distributed Executions Global states and cuts

Cut

Definition (Cut)

A cut of a distributed computation is the union of n partial histories,
one for each process:

C = hc1
1 ∪ hc2

2 ∪ · · · ∪ hcnn

� A cut may be described by a tuple (c1, c2, · · · , cn), identifying the
frontier of the cut, i.e. the set of last events, one per process.

� Each cut (c1, c2, · · · , cn) has a corresponding global state
(σc1

1 ∪ σ
c2
2 ∪ · · · ∪ σcnn).

�� ��12 on 73

Modeling Distributed Executions Global states and cuts

Cut

�� ��13 on 73

Modeling Distributed Executions Global states and cuts

Consistent Cut

Consider cuts C’ and C in the previous figure.

� Is it possible that cut C correspond to a “real” state in the
execution of a distributed algorithm?

� Is it possible that cut C’ correspond to a “real” state in the
execution of a distributed algorithm?

�� ��14 on 73

Modeling Distributed Executions Global states and cuts

Consistent Cut

Consider cuts C’ and C in the previous figure.

Definition (Consistent cut)

A cut C is consistent is for all events e and e’,

(e ∈ C) ∧ (e ′ −→ e)⇒ e ′ ∈ C

Definition (Consistent global state)

A global state is consistent if the corresponding cut is consistent.

In other words

� A consistent cut is left-closed with regard to (w.r.t.) the
happen-before relation

� All messages that have been received must have been sent before

�� ��15 on 73

Modeling Distributed Executions Global states and cuts

Consistent Cut

Consider cuts C’ and C in the previous figure.

� In the previous figures, C is consistent and C’ is not.

� In the space-time diagram, a cut C is consistent if all the arrows
start on the left of the cut and finish on the right of the cut.

� Consistent cuts represent the concept of scalar time in distributed
computation: it is possible to distinguish between a “before” and
an “after”.

� Predicates can be evaluated in consistent cuts, because they
correspond to potential global states that could have taken place
during an execution.

�� ��16 on 73

Global predicate evaluation Problem Definition

Outline

Modeling Distributed Executions

Global predicate evaluation
Problem Definition
Example: deadlock detection

Real clocks vs logical clocks

Passive monitoring

�� ��17 on 73

Global predicate evaluation Problem Definition

Introduction

Consider cuts C’ and C in the previous figure.

Definition (Global Predicate Evaluation)

The problem of detecting whether the global state of a distributed
system satisfies some predicate Φ.

Motivation
� Many important distributed problems require to react when when

the global state of the system satisfies a given condition.
� Monitoring: Notify an administrator in case of failures
� Debugging: Verify whether an invariant is respected or not
� Deadlock detection: can the computation continue?
� Garbage collection: like Java, but distributed

� Thus, the ability to construct a global state and evaluate a
predicate over it is a core problem in distributed computing.

�� ��18 on 73

Global predicate evaluation Problem Definition

Examples

�� ��19 on 73

Global predicate evaluation Problem Definition

Why GPE is difficult

A global state obtained through remote observations could be

� obsolete: represent an old state of the system.
Solution: build the global state more frequently

� inconsistent: capture a global state that could never have been
occurred in reality
Solution: build only consistent global states

� incomplete: not “capture” every moment of the system
Solution: build all possible consistent global states

�� ��20 on 73

Global predicate evaluation Problem Definition

Space-Time Diagram of a Distributed Computation

�� ��21 on 73

Global predicate evaluation Example: deadlock detection

Outline

Modeling Distributed Executions

Global predicate evaluation
Problem Definition
Example: deadlock detection

Real clocks vs logical clocks

Passive monitoring

�� ��22 on 73

Global predicate evaluation Example: deadlock detection

Example – Deadlock detection on a multi-tier system

Processes in the previous figures use RPCs:

� Client sends a request for method execution; blocks.

� Server receives request.

� Server executes method; may invoke other methods in other
servers, acting as a client.

� Server sends reply to client

� Clients receives reply; unblocks.

Such a system can deadlock, as RPCs are blocking. It is important to
be able to detect when a deadlock occurs.

�� ��23 on 73

Global predicate evaluation Example: deadlock detection

Runs and consistent runs

Processes in the previous figures use RPCs:

Definition (Run)

A run of global computation is a total ordering R that includes all the
events in the local histories and that is consistent with each of them.

� In other words, the events of pi appear in R in the same order in
which they appear in hi .

� A run corresponds to the notion that events in a distributed
computation actually occur in a total order

� A distributed computation may correspond to many runs

Definition (Consistent run)

A run R is said to be consistent if for all events e and e’, e −→ e ′

implies that e appears before e’ in R.

�� ��24 on 73

Global predicate evaluation Example: deadlock detection

Runs and consistent runs

� e1
1e

1
2e

1
3e

2
1e

2
2e

2
3e

1
3e

2
3e

3
3e

1
4e

3
4e

1
5e

3
5e

1
6e

3
6 ?

� e1
1e

1
2e

1
3e

2
1e

2
3e

3
3e

1
3e

1
4e

2
3e

3
4e

2
2e

1
5e

3
5e

1
6e

3
6 ?

�� ��25 on 73

Global predicate evaluation Example: deadlock detection

Monitoring Distributed Computations

� Assumptions:
� There is a single process p0 called monitor which is responsible for

evaluating Φ
� We assume that the monitor p0 is distinct from the observed processes

p1 · · · pn
� Events executed on behalf of monitoring do not alter canonical

enumeration of “real” events

� In general, observed processes send notifications about local events
to the monitor, which builds an observation.

�� ��26 on 73

Global predicate evaluation Example: deadlock detection

Observations

Definition (Observation)

The sequence of events corresponding to the order in which notification
messages arrive at the monitor is called an observation.

Given the asynchronous nature of our distributed system, any
permutation of a run R is a possible observation of it.

Definition (Consistent observation)

An observation is consistent if it corresponds to a consistent run.

�� ��27 on 73

Real clocks vs logical clocks

How to obtain consistent observations

� The happen-before relation captures the concept of potential
causality

� In the “day-to-day” life, causality/concurrency are tracked using
physical time
� We use loosely synchronized watches;
� Example: I have withdrawn money from an ATM in Trento at 13.00

on 17th May 2006, so I can prove that I’ve not withdrawn money on
the same day at 13.20 in Paris

� In distributed computing systems:
� the rate of occurrence of events is several magnitudes higher
� event execution time is several magnitudes smaller

� If physical clocks are not precisely synchronized, the
causality/concurrence relations between events may not be
accurately captured �� ��28 on 73

Real clocks vs logical clocks Logical clocks

Outline

Modeling Distributed Executions

Global predicate evaluation

Real clocks vs logical clocks
Logical clocks
Scalar logical clocks
Vector logical clocks

Passive monitoring

�� ��29 on 73

Real clocks vs logical clocks Logical clocks

Logical clocks

Instead of using physical clocks, which are impossible to synchronize,
we use logical clocks.

� Every process has a logical clock that is advanced using a set of
rules

� Its value is not required to have any particular relationship to any
physical clock.

� Every event is assigned a timestamp, taken from the logical clock

� The causality relation between events can be generally inferred
from their timestamps

�� ��30 on 73

Real clocks vs logical clocks Logical clocks

Logical clocks

Instead of using physical clocks, which are impossible to synchronize,
we use logical clocks.

Definition (Logical clock)

A logical clock LC is a function that maps an event e from a distributed
system execution to an element of a time domain T :

LC : H −→ T

Definition (Clock Consistency)

e −→ e ′ ⇒ LC (e) < LC (e ′)

Definition (Strong Clock Consistency)

e −→ e ′ ⇐⇒ LC (e) < LC (e ′)

�� ��31 on 73

Real clocks vs logical clocks Scalar logical clocks

Outline

Modeling Distributed Executions

Global predicate evaluation

Real clocks vs logical clocks
Logical clocks
Scalar logical clocks
Vector logical clocks

Passive monitoring

�� ��32 on 73

Real clocks vs logical clocks Scalar logical clocks

Scalar logical clocks (I)

Instead of using physical clocks, which are impossible to synchronize,
we use logical clocks.

Definition (Scalar logical clocks)

� A Lamport’s scalar logical clock is a monotonically increasing
software counter

� Each process pi keeps its own logical clock LCi

� The timestamp of event e executed by process pi is denoted LCi (e)

� Messages carry the timestamp of their send event

� Logical clocks are initialized to 0

�� ��33 on 73

Real clocks vs logical clocks Scalar logical clocks

Scalar logical clocks (II)

Update rule

Whenever an event e is executed by process pi , its local logical clock
is updated as follows:

LCi =

{
LCi + 1 If ei is an internal or send event
max{LCi ,TS(m)}+ 1 If ei=receive(m)

�� ��34 on 73

Real clocks vs logical clocks Scalar logical clocks

Scalar logical clocks (III)

�� ��35 on 73

Real clocks vs logical clocks Scalar logical clocks

Properties

Theorem

Scalar logical clocks satisfy Clock consistency, i.e.

e −→ e ′ ⇒ LC (e) < LC (e ′)

Proof

This immediately follows from the update rules of the clock.

�� ��36 on 73

Real clocks vs logical clocks Scalar logical clocks

Scalar logical clocks

Theorem

Scalar logical clocks do not satisfy Strong clock consistency, i.e.

LC (e) < LC (e ′) 6⇒ e −→ e ′

�� ��37 on 73

Real clocks vs logical clocks Vector logical clocks

Outline

Modeling Distributed Executions

Global predicate evaluation

Real clocks vs logical clocks
Logical clocks
Scalar logical clocks
Vector logical clocks

Passive monitoring

�� ��38 on 73

Real clocks vs logical clocks Vector logical clocks

Causal histories clocks

Definition (Causal History)

The causal history of an event e is the set of events that happen-before
e, plus e itself.

θ(e) = {e ′ ∈ H|e ′ −→ e} ∪ {e}

Theorem

Causal histories satisfy Strong clock consistency

Proof

∀e 6= e ′ : LC (e) < LC (e ′)⇐⇒ θ(e) ⊂ θ(e ′)⇐⇒ e ∈ θ(e ′)⇐⇒ e −→ e ′

�� ��39 on 73

Real clocks vs logical clocks Vector logical clocks

Example

Problem:
Causal histories tend to grow too much; they cannot be used as
“timestamps” for messages.

�� ��40 on 73

Real clocks vs logical clocks Vector logical clocks

Vector clocks

� Causal history projection: θi (e) = θ(e) ∩ hi = hcii
� θ(e) = θ1(e) ∪ θ2(e) ∪ · · · ∪ θ(e) = hc1

1 ∪ hc2
2 ∪ · · · ∪ hcnn

� In other words, θ(e) is a cut, which happens to be consistent.

� Cuts can be represented by their frontiers: θ(e) = (c1, c2, · · · , cn)

Definition

The vector clock associated to event e is a n-dimensional vector VC(e)
such that

VC (e)[i] = ci where θi (e) = hcii

�� ��41 on 73

Real clocks vs logical clocks Vector logical clocks

Vector clocks: Implementation

� Each process pi maintains a vector clock VCi , initially all zeroes;

� When event ei is executed, VCi assumes the value of VC (ei);

� If ei = send(m), the timestamp of m is TS(m) = VC (ei);

Update rule

When event ei is executed by process pi , VCi is updated as follows:

� If ei is an internal or send event:

VCi [i] = VCi [i] + 1

� If ei = receive(m):

VCi [j] = max{VCi [j],TS(m)[j]} ∀j 6= i
VCi [i] = VC [i] + 1

�� ��42 on 73

Real clocks vs logical clocks Vector logical clocks

Example

�� ��43 on 73

Real clocks vs logical clocks Vector logical clocks

Properties of Vector clocks (I)

“Less than” relation for Vector clocks

V < V ′ ⇐⇒ (V 6= V ′) ∧ (∀k : 1 ≤ k ≤ n : V [k] ≤ V ′[k])

Strong Clock Condition

e −→ e ′ ⇐⇒ VC (e) < VC (e ′)⇐⇒ θ(e) ⊂ θ(e ′)

Simple Strong Clock Condition

ei −→ ej ⇐⇒ VC (ei)[i] ≤ VC (ej)[i]

�� ��44 on 73

Real clocks vs logical clocks Vector logical clocks

Properties of Vector clocks (II)

Definition (Concurrent events)

Events ei and ej are concurrent (i.e. ei ||ej) if and only if:

(VC (ei)[i] > VC (ej)[i]) ∧ (VC (ej)[j] > VC (ei)[j])

In other words, event ei does not happen-before ej , and ej does not
happen before ei .

�� ��45 on 73

Real clocks vs logical clocks Vector logical clocks

Concurrent events

(VC (ei)[i] > VC (ej)[i]) ∧ (VC (ej)[j] > VC (ei)[j])

�� ��46 on 73

Real clocks vs logical clocks Vector logical clocks

Properties of vector clocks

Definition (Pairwise Inconsistent)

Events ei and ej with i 6= j are pairwise inconsistent if and only if

(VC (ei)[i] < VC (ej)[i]) ∨ (VC (ej)[j] < VC (ei)[j])

In other words, two events are pairwise inconsistent if they cannot
belong to the frontier of the same consistent cut. The formula
characterize the fact that the cut include a receive event without
including a send event.

�� ��47 on 73

Real clocks vs logical clocks Vector logical clocks

Properties of vector clocks

Pairwise Inconsistent

(VC (ei)[i] < VC (ej)[i]) ∨ (VC (ej)[j] < VC (ei)[j])

�� ��48 on 73

Real clocks vs logical clocks Vector logical clocks

Properties of vector clocks

Definition (Consistent Cut)

A cut defined by (c1, · · · , cn) is consistent if and only if: ∀i , j ∈ [1 · · · n]:

VC (ecii)[i] ≥ VC (e
cj
j)[i])

In other words, a cut is consistent if its frontier does not contain any
pairwise inconsistent pair of events.

�� ��49 on 73

Passive monitoring

A Passive Approach to GPE

How it works

� At each (relevant) event, each process sends a notification to the
monitor describing it local state

� The monitor collects notifications to reconstruct an observation of
the global state.

An observation taken in this way can correspond to:

� A consistent run

� A run which is not consistent

� No run at all

Can you find example of the three cases?
Can you explain why this happen?

�� ��50 on 73

Passive monitoring

Observations which are not runs

Problem

Observations may not correspond to a run because each notification
sent by the process to the monitor may be delayed arbitrarily and thus
arrive in any possible order

Solution

To adopt communication channels between the processes and the mon-
itor that guarantee that messages are never re-ordered

�� ��51 on 73

Passive monitoring

Message ordering

Definition (FIFO Order)

Two messages sent by pi to pj must be delivered in the same order in
which they were sent:

∀m,m′ : sendi (m) −→ sendi (m
′)⇒ deliverj(m) −→ deliverj(m

′)

What is “deliver”?

�� ��52 on 73

Passive monitoring

Delivery Rules

How to order messages?

� To be ordered, each message m carries a timestamp TS(m)
containing “ordering” information

� The act of providing the process with a message in the desired
order is called delivery; the event deliver(m) is thus distinct from
receive (m).

� The rule describing which messages can be delivered among those
received is called delivery rule

�� ��53 on 73

Passive monitoring

FIFO Order - Implementation

� Each process maintains a local sequence number incremented at
each notification sent

� The timestamp of a notification message corresponds to the local
sequence number of the sender at the time of sending

Definition (FIFO Delivery Rule)

If the last notification delivered by p0 from pj has timestamp s, p0 may
deliver “any” message m received from pj with TS(m)=s+1.

�� ��54 on 73

Passive monitoring

Observations which are not consistent runs

Problem

If we use FIFO order between all processes and p0, all the observa-
tions taken by p0 will be runs; but there is no guarantee that they are
consistent runs.

Solution

To adopt communication channels that guarantee that notification ar-
rives in an order that respects the happen-before relation..

�� ��55 on 73

Passive monitoring

Message ordering

Definition (Causal Order)

Two messages sent by pi and pj to pk must be delivered following the
happen-before relation:

∀m,m′ : sendi (m) −→ sendj(m
′)⇒ deliverk(m) −→ deliverk(m′)

Question

FIFO order among all channels...
Is it sufficient to obtain Causal delivery?

�� ��56 on 73

Passive monitoring

Example

�� ��57 on 73

Passive monitoring

Causal delivery and consistent observations

Theorem

If p0 uses a delivery rule satisfying Causal Order, then all of its obser-
vations will be consistent.

Proof

Definition of Causal Order ? definition of a consistent observation

Next, we will show three methods to implement a causal delivery rule

�� ��58 on 73

Passive monitoring Passive monitoring, v.1

Outline

Modeling Distributed Executions

Global predicate evaluation

Real clocks vs logical clocks

Passive monitoring
Passive monitoring, v.1
Passive monitoring, v.2
Passive monitoring, v.3

�� ��59 on 73

Passive monitoring Passive monitoring, v.1

Passive monitoring with real-time

Initial assumptions

� All processes have access to a real-time clock RC

� Let RC(e) be the real-time at which e is executed

� All messages are delivered within a time δ

� The timestamp of message m sent by an event e=send(m) is
TS(m)=RC(e).

Definition (DR1: Real-time delivery rule)

At time t, delivery all received notification messages m in increasing
timestamp order.

Theorem

Observation O constructed by p0 using DR1 is guaranteed to be con-
sistent �� ��60 on 73

Passive monitoring Passive monitoring, v.1

Stability of messages

Definition (Stability)

A notification message m received by p0 is stable at p0 if no message
m’ with TS(m’)¡TS(m) can be received in the future by p0

Definition (DR1: Real-time delivery rule)

At time t, delivery all received notification messages m such that
TS(m) ≤ t − δ in increasing timestamp order.

�� ��61 on 73

Passive monitoring Passive monitoring, v.1

Proof

?Safety: Clock Condition for RC

e −→ e ′ ⇒ RC (e) < RC (e ′)

Note that RC (e) < RC (e ′) 6⇒ e −→ e ′, but this rule is sufficient to
obtain consistent observations, as two notifications e −→ e ′ are never
delivered in the incorrect order.

Liveness: Stability

At time t, any message sent by time t − δ is stable.

Note that real-time clocks do not support stability; it is the maximum
delay of messages that enables it.

�� ��62 on 73

Passive monitoring Passive monitoring, v.2

Outline

Modeling Distributed Executions

Global predicate evaluation

Real clocks vs logical clocks

Passive monitoring
Passive monitoring, v.1
Passive monitoring, v.2
Passive monitoring, v.3

�� ��63 on 73

Passive monitoring Passive monitoring, v.2

Proof

Passive monitoring with logical clocks

Initial assumptions

� All processes have access to a logical clock LC; let LC(e) be the
real-time at which e is executed

� The timestamp of message m sent through an event e=send(m) is
TS(m)=LC(e)

Definition (DR2: Deliver Rule for LC)

Deliver all received messages that are stable at p0 in increasing times-
tamp order

�� ��64 on 73

Passive monitoring Passive monitoring, v.2

Passive monitoring with logical clocks

?Safety: Clock Condition for LC

e −→ e ′ ⇒ LC (e) < LC (e ′)

Note that LC (e) < LC (e ′) 6⇒ e −→ e ′, but this rule is sufficient to
obtain consistent observations, as two notifications e −→ e ′ are never
delivered in the incorrect order.

�� ��65 on 73

Passive monitoring Passive monitoring, v.2

Passive monitoring with logical clocks

Liveness: Stability

We need a way to reproduce the concept of δ in an asynchronous
system, otherwise no notification message will be ever delivered.

Solution

� Each process communicates with p0 using FIFO delivery

� When p0 receives a message from pi describing an event e with
timestamp TS(e), it is sure that it will never receive a message
from pi describing an event e’ with TS(e ′) ≤ TS(e)

� Stability of message m at p0 can be guaranteed when p0 has
received at least one message from all other processes with a
timestamp greater or equal than TS(m)

�� ��66 on 73

Passive monitoring Passive monitoring, v.2

Problems of Logical Clocks

� They add unnecessary delays to observations

� They require a constant flux of messages/events from all processes

�� ��67 on 73

Passive monitoring Passive monitoring, v.2

Passive Monitoring with Vector Clocks

Variables maintained at p0

� M the set of notification messages received but not yet delivered
by p0

� an array D, initialized to 0’s, such that D[k] contains TS(m)[k]
where m is the last notification message delivered by p0 from
process pk .

When a notification message is deliverable by p0?
A notification message m ∈M from process pj is deliverable as soon
as p0 can verify that there is no other notification message m’
(neither in M nor in the channels) such that send(m′) −→ send(m).

�� ��68 on 73

Passive monitoring Passive monitoring, v.3

Outline

Modeling Distributed Executions

Global predicate evaluation

Real clocks vs logical clocks

Passive monitoring
Passive monitoring, v.1
Passive monitoring, v.2
Passive monitoring, v.3

�� ��69 on 73

Passive monitoring Passive monitoring, v.3

Implementing Causal Delivery with Vector Clocks

� m ∈M: a notification message sent by pj to p0

� m’: the last notification message delivered from process pk , k 6= j

Definition (Weak Gap Detection)

If TS(m′)[k] < TS(m)[k] for some k 6= j , then there exists event
sendk(m′′) such that

sendk(m′) −→ sendk(m′′) −→ sendj(m)

�� ��70 on 73

Passive monitoring Passive monitoring, v.3

Implementing Causal Delivery with Vector Clocks

Two conditions to be verified:

� There is no earlier message from pj that has not been delivered yet.
Causal Delivery Rule, Part 1: D[j]==TS(m)[j]-1

� ∀k 6= j , let m’ be the last message from pk delivered by p0

(D[k]=TS(m’)[k]); we must be sure that no message m” from pk
exists such that: sendk(m′) −→ sendk(m′′) −→ sendj(m)
Causal Delivery Rule, Part 2: ∀k 6= j : D[k] ≥ TS(m)[k] It follows
from Weak Gap Detection

�� ��71 on 73

Passive monitoring Passive monitoring, v.3

Example

�� ��72 on 73

Passive monitoring Passive monitoring, v.3

Final Comments

� We have seen how to implement Causal Delivery “many-to-one”

� The same rules apply if we implement a mechanism for
implementing “one-to-many” (reliable broadcast)

�� ��73 on 73

	Modeling Distributed Executions
	Happen-Before
	Global states and cuts

	Global predicate evaluation
	Problem Definition
	Example: deadlock detection

	Real clocks vs logical clocks
	Logical clocks
	Scalar logical clocks
	Vector logical clocks

	Passive monitoring
	Passive monitoring, v.1
	Passive monitoring, v.2
	Passive monitoring, v.3

