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Introduction

� Mutual exclusion: Concurrent access of processes to a shared
resource or data is executed in mutually exclusive manner.

� Only one process is allowed to execute the critical section (CS) at
any given time.

� In a distributed system, shared variables (semaphores) or a local
kernel cannot be used to implement mutual exclusion.

� Message passing is the sole means for implementing distributed
mutual exclusion.
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Introduction

� Distributed mutual exclusion algorithms must deal with
unpredictable message delays and incomplete knowledge of the
system state.

� Three basic approaches for distributed mutual exclusion:
� Token based approach
� Non-token based approach
� Quorum based approach

� Token-based approach:
� A unique token is shared among the sites.
� A site is allowed to enter its CS if it possesses the token.
� Mutual exclusion is ensured because the token is unique.
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Introduction

� Non-token based approach:
� Two or more successive rounds of messages are exchanged among the

sites to determine which site will enter the CS next.

� Quorum based approach:
� Each site requests permission to execute the CS from a subset of sites

(called a quorum).
� Any two quorums contain a common site.
� This common site is responsible to make sure that only one request

executes the CS at any time.
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Preliminaries

System Model
� The system consists of N sites, S1,S2, · · · , SN .
� We assume that a single process is running on each site. The

process at site Si is denoted by pi .
� A site can be in one of the following three states: requesting the

CS, executing the CS, or neither requesting nor executing the CS
(i.e., idle).

� In the ‘requesting the CS’ state, the site is blocked and can not
make further requests for the CS. In the ”idle” state, the site is
executing outside the CS.

� In token-based algorithms, a site can also be in a state where a site
holding the token is executing outside the CS (called the idle token
state).

� At any instant, a site may have several pending requests for CS. A
site queues up these requests and serves them one at a time. �� ��6 on 104
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Requirements

Requirements of Mutual Exclusion Algorithms

� Safety Property: At any instant, only one process can execute
the critical section.

� Liveness Property: This property states the absence of deadlock
and starvation. Two or more sites should not endlessly wait for
messages which will never arrive.

� Fairness: Each process gets a fair chance to execute the CS.
Fairness property generally means the CS execution requests are
executed in the order of their arrival (time is determined by a
logical clock) in the system.
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Performance Metrics

The performance is generally measured by the following four metrics:

� Message complexity: The number of messages required per CS
execution by a site.

� Synchronization delay: After a site leaves the CS, it is the time
required and before the next site enters the CS (see Figure 1).

Figure : Synchronization Delay

�� ��8 on 104



Distributed Computing: Principles, Algorithms, and Systems

Performance Metrics

� Response time: The time interval a request waits for its CS
execution to be over after its request messages have been sent out
(see Figure 2).

Figure : Response Time
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Performance Metrics

� System throughput: The rate at which the system executes
requests for the CS.

system throughput=1/(SD+E)

where SD is the synchronization delay and E is the average critical
section execution time.
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Performance Metrics

Low and High Load Performance:

� We often study the performance of mutual exclusion algorithms
under two special loading conditions, as follows, “low load” and
“high load”.

� The load is determined by the arrival rate of CS execution requests.

� Under low load conditions, there is seldom more than one request
for the critical section present in the system simultaneously.

� Under heavy load conditions, there is always a pending request for
critical section at a site.
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Lamport’s Algorithm

� Requests for CS are executed in the increasing order of timestamps
and time is determined by logical clocks.

� Every site Si keeps a queue, request queuei , which contains
mutual exclusion requests ordered by their timestamps.

� This algorithm requires communication channels to deliver
messages the FIFO order.
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The Algorithm

Requesting the critical section:

� When a site Si wants to enter the CS, it broadcasts a
REQUEST(tsi , i) message to all other sites and places the request
on request queuei . ((tsi , i) denotes the timestamp of the request.)

� When a site Sj receives the REQUEST(tsi ,i) message from site Si ,
places site Si ’s request on request queuej and it returns a
timestamped REPLY message to Si .

Executing the critical section: Site Si enters the CS when the
following two conditions hold:

� L1: Si has received a message with timestamp larger than (tsi , i)
from all other sites.

� L2: Si ’s request is at the top of request queuei .
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The Algorithm

Releasing the critical section:

� Site Si , upon exiting the CS, removes its request from the top of
its request queue and broadcasts a timestamped RELEASE
message to all other sites.

� When a site Sj receives a RELEASE message from site Si , it
removes Si ’s request from its request queue.

When a site removes a request from its request queue, its own request
may come at the top of the queue, enabling it to enter the CS.
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Correctness

Theorem

Lamport’s algorithm achieves mutual exclusion.

Proof

� Proof is by contradiction. Suppose two sites Si and Sj are
executing the CS concurrently. For this to happen conditions L1
and L2 must hold at both the sites concurrently.

� This implies that at some instant in time, say t, both Si and Sj
have their own requests at the top of their request queues and
condition L1 holds at them. Without loss of generality, assume
that Si ’s request has smaller timestamp than the request of Sj .
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Correctness

Proof

� From condition L1 and FIFO property of the communication
channels, it is clear that at instant t the request of Si must be
present in request queuej when Sj was executing its CS. This
implies that Sj ’s own request is at the top of its own request queue
when a smaller timestamp request, Si ’s request, is present in the
request queuej – a contradiction!
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Correctness

Theorem

Lamport’s algorithm is fair.

Proof

� The proof is by contradiction. Suppose a site Si ’s request has a
smaller timestamp than the request of another site Sj and Sj is
able to execute the CS before Si .

� For Sj to execute the CS, it has to satisfy the conditions L1 and
L2. This implies that at some instant in time say t, Sj has its own
request at the top of its queue and it has also received a message
with timestamp larger than the timestamp of its request from all
other sites.

�� ��17 on 104



Distributed Computing: Principles, Algorithms, and Systems

Correctness

Proof

� But request queue at a site is ordered by timestamp, and according
to our assumption Si has lower timestamp. So Si ’s request must
be placed ahead of the Sj ’s request in the request queuej . This is
a contradiction!
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Performance

� For each CS execution, Lamport’s algorithm requires (N-1)
REQUEST messages, (N-1) REPLY messages, and (N-1)
RELEASE messages.

� Thus, Lamport’s algorithm requires 3(N-1) messages per CS
invocation.

� Synchronization delay in the algorithm is T.
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An optimization

� In Lamport’s algorithm,REPLY messages can be omitted in certain
situations. For example, if site Sj receives a REQUEST message
from site Si after it has sent its own REQUEST message with
timestamp higher than the timestamp of site Si ’s request, then site
Sj need not send a REPLY message to site Si .

� This is because when site Si receives site Sj ’s request with
timestamp higher than its own, it can conclude that site Sj does
not have any smaller timestamp request which is still pending.

� With this optimization, Lamport’s algorithm requires between
3(N-1) and 2(N-1) messages per CS execution.
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Ricart-Agrawala Algorithm

� The Ricart-Agrawala algorithm assumes the communication
channels are FIFO. The algorithm uses two types of messages:
REQUEST and REPLY.

� A process sends a REQUEST message to all other processes to
request their permission to enter the critical section. A process
sends a REPLY message to a process to give its permission to that
process.

� Processes use Lamport-style logical clocks to assign a timestamp
to critical section requests and timestamps are used to decide the
priority of requests.

� Each process pi maintains the Request-Deferred array, RDi , the
size of which is the same as the number of processes in the system.

� Initially, ∀i∀j : RDi [j ] = 0. Whenever pi defer the request sent by
pj , it sets RDi [j ] = 1 and after it has sent a REPLY message to pj ,
it sets RDi [j ] = 0. �� ��21 on 104
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Description of the Algorithm

Requesting the critical section:

� When a site Si wants to enter the CS, it broadcasts a timestamped
REQUEST message to all other sites.

� When site Sj receives a REQUEST message from site Si , it sends a
REPLY message to site Si if site Sj is neither requesting nor
executing the CS, or if the site Sj is requesting and Si ’s request’s
timestamp is smaller than site Sj ’s own request’s timestamp.
Otherwise, the reply is deferred and Sj sets RDj [i ] = 1

Executing the critical section:

� Site Si enters the CS after it has received a REPLY message from
every site it sent a REQUEST message to.
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Description of the Algorithm

Releasing the critical section:

� When site Si exits the CS, it sends all the deferred REPLY
messages: ∀j if RDi [j ] = 1, then send a REPLY message to Sj and
set RDi [j ] = 0.

Notes

� When a site receives a message, it updates its clock using the
timestamp in the message.

� When a site takes up a request for the CS for processing, it
updates its local clock and assigns a timestamp to the request.
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Correctness

Theorem

Ricart-Agrawala algorithm achieves mutual exclusion.

Proof

� Proof is by contradiction. Suppose two sites Si and Sj are
executing the CS concurrently and Si ’s request has higher priority
than the request of Sj . Clearly, Si received Sj ’s request after it has
made its own request.

� Thus, Sj can concurrently execute the CS with Si only if Si returns
a REPLY to Sj (in response to Sj ’s request) before Si exits the CS.

� However, this is impossible because Sj ’s request has lower
priority.Therefore, Ricart-Agrawala algorithm achieves mutual
exclusion.
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Performance

� For each CS execution, Ricart-Agrawala algorithm requires (N-1)
REQUEST messages and (N-1) REPLY messages.

� Thus, it requires 2(N-1) messages per CS execution.

� Synchronization delay in the algorithm is T.
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Singhal’s Dynamic Information-Structure Algorithm

� Most mutual exclusion algorithms use a static approach to invoke
mutual exclusion.

� These algorithms always take the same course of actions to invoke
mutual exclusion no matter what is the state of the system.

� These algorithms lack efficiency because they fail to exploit the
changing conditions in the system.

� An algorithm can exploit dynamic conditions of the system to
improve the performance.
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Singhal’s Dynamic Information-Structure Algorithm

� For example, if few sites are invoking mutual exclusion very
frequently and other sites invoke mutual exclusion much less
frequently, then
� A frequently invoking site need not ask for the permission of less

frequently invoking site every time it requests an access to the CS.
� It only needs to take permission from all other frequently invoking

sites.

� Singhal developed an adaptive mutual exclusion algorithm based
on this observation.

� The information-structure of the algorithm evolves with time as
sites learn about the state of the system through messages.
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Singhal’s Dynamic Information-Structure Algorithm

Challenges
The design of adaptive mutual exclusion algorithms is challenging:

� How does a site efficiently know what sites are currently actively
invoking mutual exclusion?

� When a less frequently invoking site needs to invoke mutual
exclusion, how does it do it?

� How does a less frequently invoking site makes a transition to more
frequently invoking site and vice-versa.

� How to insure that mutual exclusion is guaranteed when a site
does not take the permission of every other site.

� How to insure that a dynamic mutual exclusion algorithm does not
waste resources and time in collecting systems state, offsetting any
gain. �� ��28 on 104
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System Model

� We consider a distributed system consisting of n autonomous sites,
say, S1,S2, · · · , Sn, connected by a communication network.

� We assume that the sites communicate completely by message
passing.

� Message propagation delay is finite but unpredictable.

� Between any pair of sites, messages are delivered in the order they
are sent.

� The underlying communication network is reliable and sites do not
crash.
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Data Structures

� Information-structure at a site Si consists of two sets. The first set
Ri , called request set, contains the sites from which Si must
acquire permission before executing CS.

� The second set Ii , called inform set,contains the sites to which Si
must send its permission to execute CS after executing its CS.

� Every site Si maintains a logical clock Ci , which is updated
according to Lamport’s rules.

� Every site maintains three boolean variables to denote the state of
the site: Requesting, Executing, and My priority .

� Requesting and executing are true if and only if the site is
requesting or executing CS, respectively. My priority is true if
pending request of Si has priority over the current incoming
request. �� ��30 on 104
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Initialization

The system starts in the following initial state:
For a site Si (i=1 to n),

� Ri := {S1, S2, · · · ,Si−1,Si}
� Ii := {Si}
� Ci := 0

� Requestingi = Executingi := False
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Initialization

If we stagger sites Sn to S1 from left to right, then the initial system
state has the following two properties:

� For a site, only all the sites to its left will ask for its permission and
it will ask for the permission of only all the sites to its right.

� The cardinality of Ri decreases in stepwise manner from left to
right. Due to this reason, this configuration has been called
”staircase pattern” in topological sense.
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The Algorithm

If we stagger sites Sn to S1 from left to right, then the initial system
state has the following two properties:
Step 1: (Request Critical Section)

Requesting=true;
Ci = Ci + 1;
Send REQUEST(Ci , i) message to all sites in Ri ;
Wait until Ri = ∅;
/* Wait until all sites in Ri have sent a reply to Si */
Requesting = false;

Step 2: (Execute Critical Section)
Executing = true;
Execute CS;
Executing = false;

�� ��33 on 104



Distributed Computing: Principles, Algorithms, and Systems

The Algorithm

Step 3: (Release Critical Section)
For every site Sk in Ii (except Si ) do

Begin
Ii = Ii − {Sk};
Send REPLY(Ci , i) message to Sk ;
Ri = Ri + {Sk}

End
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The Algorithm

REQUEST message handler
/* Site Si is handling message REQUEST(c, j) */
Ci := max{Ci , c};
Case
Requesting=true:
Begin if My priority then Ii := Ii + {j}
/*My Priority true if pending request of Si has priority over incoming
request */
Else
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The Algorithm

Begin
Send REPLY(Ci , i) message to Sj ;
If not (Sj ∈ Ri ) then

Begin
Ri = Ri + {Sj};
Send REQUEST(Ci , i) message to site Sj ;

End;
Executing=true: Ii = Ii + {Sj};
Executing =false ∧ Requesting=false:
Begin

Ri = Ri + {Sj};
Send REQUEST(Ci , i) message to site Sj ;

End;
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The Algorithm

REPLY message handler
/* Site Si is handling a message REPLY(c, j) */
Begin

Ci := max{Ci , c};
Ri = Ri − {Sj};

End;

� Note that REQUEST and REPLY message handlers and the steps
of the algorithm access shared data structures, as follows, Ci ,Ri ,
and Ii .

� To guarantee the correctness, it’s important that execution of
REQUEST and REPLY message handlers and all three steps of the
algorithm (except ”wait for Ri = ∅ to hold” in Step 1) mutually
exclude each other.
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An Explanation of the Algorithm

� Si acquires permission to execute the CS from all sites in its
request set Ri and it releases the CS by sending a REPLY message
to all sites in its inform set Ii .

� If site Si which itself is requesting the CS, receives a higher priority
REQUEST message from a site Sj , then Si takes the following
actions:
� (i) Si immediately sends a REPLY message to Sj ,
� (ii) if Sj is not in Ri , then Si also sends a REQUEST message to Sj ,

and
� (iii) Si places an entry for Sj in Ri . Otherwise, Si places an entry for

Sj into Ii so that Sj can be sent a REPLY message when Si finishes
with the execution of the CS.
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An Explanation of the Algorithm

� If Si receives a REQUEST message from Sj when it is executing
the CS, then it simply puts Sj in Ii so that Sj can be sent a REPLY
message when Si finishes with the execution of the CS.

� If Si receives a REQUEST message from Sj when it is neither
requesting nor executing the CS, then it places an entry for Sj in
Ri and sends Sj a REPLY message.
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Correctness

� The initial state of the information-structure satisfies the following
condition: for every Si and Sj , either Sj ∈ Ri or Si ∈ Rj .

� Therefore, if two sites request CS, one of them will always ask for
the permission of the another.

� However, whenever there is a conflict between two sites, the sites
dynamically adjust their request sets such that both request
permission of each other satisfying the condition for mutual
exclusion.

Freedom from Deadlocks:

� The algorithm is free from deadlocks because sites use timestamp
ordering (which is unique system wide) to decide request priority
and a request is blocked by only higher priority requests.
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Performance Analysis

The synchronization delay in the algorithm is T.
The message complexity:
Low load condition:

� Most of the time only one or no request for the CS will be present
in the system.

� The staircase pattern will reestablish between two successive
requests for CS.

� Sites will send 0, 1, 2, · · · , (n − 1) number of REQUEST messages
with equal likelihood (assuming uniform traffic of CS requests at
sites).
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Performance Analysis

The synchronization delay in the algorithm is T.
The message complexity:
Low load condition:
� Therefore, the mean number of REQUEST messages sent per CS

execution for this case is
= (0 + 1 + 2 + · · ·+ (n − 1))/n = (n − 1)/2. Since a REPLY
message is returned for every REQUEST message, the average
number of messages exchanged per CS execution is
2 ∗ (n − 1)/2 = (n − 1).

Heavy load condition:
� When the rate of CS requests is high, all the sites always have a

pending request for CS execution.
� In this case, a site on the average receives (n-1)/2 REQUEST

messages from other sites while waiting for its REPLY messages.�� ��42 on 104
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Performance Analysis

Heavy load condition:

� Since a site sends REQUEST messages only in response to
REQUEST messages of higher priority, on the average it will send
(n-1)/4 REQUEST messages while waiting for REPLY messages.

� Therefore, the average number of messages exchanged per CS
execution in high demand is 2*[(n-1)/2+(n-1)/4]=3*(n-1)/2.
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Adaptivity in Heterogeneous Traffic Patterns

Heavy load condition:

� The information-structure adapts itself to the environments of
heterogeneous traffic of CS requests and to statistical fluctuations
in traffic of CS requests to optimize the performance.

� Sites with higher traffic of CS requests will position themselves
towards the right end of the staircase pattern.

� Also, at a high traffic site Si , if Sj ∈ Ri , then Sj is also a high
traffic site.

� Consequently, high traffic sites will mostly send REQUEST
messages only to other high traffic sites and will seldom send
REQUEST messages to sites with low traffic.

� This adaptivity results in a reduction in the number of messages as
well as in delay in granting CS in environments of heterogeneous
traffic. �� ��44 on 104
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Quorum-Based Mutual Exclusion Algorithms

Quorum-based mutual exclusion algorithms are different in the
following two ways:

� A site does not request permission from all other sites, but only
from a subset of the sites. The request set of sites are chosen such
that ∀i∀j : 1 ≤ i , j ≤ N :: Ri ∩ Rj 6= ∅. Consequently, every pair of
sites has a site which mediates conflicts between that pair.

� A site can send out only one REPLY message at any time. A site
can send a REPLY message only after it has received a RELEASE
message for the previous REPLY message.
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Quorum-Based Mutual Exclusion Algorithms

Since these algorithms are based on the notion of ”Coteries” and
”Quorums”, we next describe the idea of coteries and quorums.
A coterie C is defined as a set of sets, where each set g ∈ C is called
a quorum. The following properties hold for quorums in a coterie:

� Intersection property: For every quorum g , h ∈ C , g ∩ h 6= ∅
For example, sets {1, 2, 3}, {2, 5, 7} and {5, 7, 9} cannot be
quorums in a coterie because the first and third sets do not have a
common element.

� Minimality property: There should be no quorums g, h in coterie
C such that h ⊆ g . For example, sets {1, 2, 3} and {1, 3} cannot
be quorums in a coterie because the first set is a superset of the
second.
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Maekawa’s Algorithm

Coteries and quorums can be used to develop algorithms to ensure
mutual exclusion in a distributed environment. A simple protocol
works as follows:

� M1: (∀i∀j : i 6= j , 1 ≤ i , j ≤ N :: Ri ∩ Rj 6= ∅)
� M2: (∀i : 1 ≤ i ≤ N :: Si ∈ Ri )

� M3: (∀i : 1 ≤ i ≤ N :: |Ri | = K )

� M4: Any site Sj is contained in K number of Ri s, 1 ≤ i , j ≤ N.

Maekawa used the theory of projective planes and showed that
N=K(K-1)+1. This relation gives |Ri | =

√
N.
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Maekawa’s Algorithm

Example
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Maekawa’s Algorithm

� Conditions M1 and M2 are necessary for correctness; whereas
conditions M3 and M4 provide other desirable features to the
algorithm.

� Condition M3 states that the size of the requests sets of all sites
must be equal implying that all sites should have to do equal
amount of work to invoke mutual exclusion.

� Condition M4 enforces that exactly the same number of sites
should request permission from any site implying that all sites have
“equal responsibility” in granting permission to other sites.
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The Algorithm

A site Si executes the following steps to execute the CS.
Requesting the critical section

� (a) A site Si requests access to the CS by sending REQUEST(i)
messages to all sites in its request set Ri .

� (b) When a site Sj receives the REQUEST(i) message, it sends a
REPLY(j) message to Si provided it hasn’t sent a REPLY message
to a site since its receipt of the last RELEASE message.
Otherwise, it queues up the REQUEST(i) for later consideration.

Executing the critical section

� (c) Site Si executes the CS only after it has received a REPLY
message from every site in Ri .
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The Algorithm

Releasing the critical section

� (d) After the execution of the CS is over, site Si sends a
RELEASE(i) message to every site in Ri .

� (e) When a site Sj receives a RELEASE(i) message from site Si , it
sends a REPLY message to the next site waiting in the queue and
deletes that entry from the queue. If the queue is empty, then the
site updates its state to reflect that it has not sent out any REPLY
message since the receipt of the last RELEASE message.
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Correctness

Theorem

Maekawa’s algorithm achieves mutual exclusion.

Proof

� Proof is by contradiction. Suppose two sites Si and Sj are
concurrently executing the CS.

� This means site Si received a REPLY message from all sites in Ri

and concurrently site Sj was able to receive a REPLY message
from all sites in Rj .

� If Ri ∩ Rj = {Sk}, then site Sk must have sent REPLY messages to
both Si and Sj concurrently, which is a contradiction.
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Performance

� Since the size of a request set is
√
N, an execution of the CS

requires
√
N REQUEST,

√
N REPLY, and

√
N RELEASE

messages, resulting in 3
√
N messages per CS execution.

� Synchronization delay in this algorithm is 2T. This is because after
a site Si exits the CS, it first releases all the sites in Ri and then
one of those sites sends a REPLY message to the next site that
executes the CS.
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Problem of Deadlocks

� Maekawa’s algorithm can deadlock because a site is exclusively
locked by other sites and requests are not prioritized by their
timestamps.

� Assume three sites Si ,Sj , and Sk simultaneously invoke mutual
exclusion.

� Suppose Ri ∩ Rj = {Sij},Rj ∩ Rk = {Sjk}, and Rk ∩ Ri = {Ski}.
� Consider the following scenario:

� {Sij} has been locked by Si (forcing Sj to wait at {Sij}).
� {Sjk} has been locked by Sj (forcing Sk to wait at {Sjk}).
� {Ski} has been locked by Sk (forcing Si to wait at {Ski}).

� This state represents a deadlock involving sites Si , Sj , and Sk .
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Handling Deadlocks

� Maekawa’s algorithm handles deadlocks by requiring a site to yield
a lock if the timestamp of its request is larger than the timestamp
of some other request waiting for the same lock.

� A site suspects a deadlock (and initiates message exchanges to
resolve it) whenever a higher priority request arrives and waits at a
site because the site has sent a REPLY message to a lower priority
request

Deadlock handling requires three types of messages:
� FAILED: A FAILED message from site Si to site Sj indicates that

Si can not grant Sj ’s request because it has currently granted
permission to a site with a higher priority request.

� INQUIRE: An INQUIRE message from Si to Sj indicates that Si
would like to find out from Sj if it has succeeded in locking all the
sites in its request set. �� ��55 on 104
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Handling Deadlocks

� YIELD: A YIELD message from site Si to Sj indicates that Si is
returning the permission to Sj (to yield to a higher priority request
at Sj).
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Handling Deadlocks

Maekawa’s algorithm handles deadlocks as follows:

� When a REQUEST(ts, i) from site Si blocks at site Sj because Sj
has currently granted permission to site Sk , then Sj sends a
FAILED(j) message to Si if Si ’s request has lower priority.
Otherwise, Sj sends an INQUIRE(j) message to site Sk .

� In response to an INQUIRE(j) message from site Sj , site Sk sends
a YIELD(k) message to Sj provided Sk has received a FAILED
message from a site in its request set or if it sent a YIELD to any
of these sites, but has not received a new GRANT from it.
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Handling Deadlocks

Maekawa’s algorithm handles deadlocks as follows:

� In response to a YIELD(k) message from site Sk , site Sj assumes
as if it has been released by Sk , places the request of Sk at
appropriate location in the request queue, and sends a GRANT(j)
to the top request’s site in the queue. Maekawa’s algorithm
requires extra messages to handle deadlocks

� Maximum number of messages required per CS execution in this
case is 5

√
N
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Agarwal-El Abbadi Quorum-Based Algorithm

Agarwal-El Abbadi quorum-based algorithm uses ”tree-structured
quorums”.

� All the sites in the system are logically organized into a complete
binary tree.

� For a complete binary tree with level ”k”, we have 2k+1 − 1 sites
with its root at level k and leaves at level 0.

� The number of sites in a path from the root to a leaf is equal to
the level of the tree k+1 which is equal to O(log n).

� A path in a binary tree is the sequence a1, a2 · · · ai , ai+1 · · · ak such
that ai is the parent of ai+1.
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Algorithm for constructing a tree-structured quorum

� The algorithm tries to construct quorums in a way that each
quorum represents any path from the root to a leaf.

� If it fails to find such a path (say, because node ”x” has failed),
the control goes to the ELSE block which specifies that the failed
node ”x” is substituted by two paths both of which start with the
left and right children of ”x” and end at leaf nodes.

� If the leaf site is down or inaccessible due to any reason, then the
quorum cannot be formed and the algorithm terminates with an
error condition.

� The sets that are constructed using this algorithm are termed as
tree quorums.
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Algorithm for constructing a tree-structured quorum
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Examples of Tree-Structured Quorums

When there is no node failure, the number of quorums formed is
equal to the number of leaf sites.

� Consider the tree of height 3 show in next Figure, constructed
from 15 (=23+1 − 1) sites.

� In this case 8 quorums are formed from 8 possible root-leaf paths:
1-2-4-8, 1-2-4-9, 1-2-5-10, 1-2-5-11, 1-3-6-12, 1-3-6-13, 1-3-7-14
and 1-3-7-15.

� If any site fails, the algorithm substitutes for that site two possible
paths starting from the site’s two children and ending in leaf nodes.

� For example, when node 3 fails, we consider possible paths starting
from children 6 and 7 and ending at leaf nodes. The possible paths
starting from child 6 are 6-12 and 6-13, and from child 7 are 7-14
and 7-15. �� ��62 on 104
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Examples of Tree-Structured Quorums

When there is no node failure, the number of quorums formed is
equal to the number of leaf sites.
� So, when node 3 fails, the following eight quorums can be formed:
{1, 6, 12, 7, 14}, {1, 6, 12, 7, 15}, {1, 6, 13, 7, 14}, {1, 6, 13, 7, 15},
{1, 2, 4, 8}, {1, 2, 4, 9}, {1, 2, 5, 10}, {1, 2, 5, 11}.

Figure : A tree of 15 sites. �� ��63 on 104
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Examples of Tree-Structured Quorums

When there is no node failure, the number of quorums formed is
equal to the number of leaf sites.

� Since the number of nodes from root to leaf in an ”n” node
complete tree is log n, the best case for quorum formation, i.e, the
least number of nodes needed for a quorum is log n.

� When the number of node failures is greater than or equal to log n,
the algorithm may not be able to form tree-structured quorum.

� So, as long as the number of site failures is less than log n, the
tree quorum algorithm guarantees the formation of a quorum and
it exhibits the property of ”graceful degradation”.

�� ��64 on 104



Distributed Computing: Principles, Algorithms, and Systems

Mutual Exclusion Algorithm

A site s enters the critical section (CS) as follows:
� Site s sends a ”Request” message to all other sites in the

structured quorum it belongs to.
� Each site in the quorum stores incoming requests in a request

queue, ordered by their timestamps.
� A site sends a ”Reply” message, indicating its consent to enter CS,

only to the request at the head of its request queue, having the
lowest timestamp.

� If the site s gets a ”Reply” message from all sites in the structured
quorum it belongs to, it enters the CS.

� After exiting the CS, s sends a ”Relinquish” message to all sites in
the structured quorum. On the receipt of the ”Relinquish”
message, each site removes s’s request from the head of its request
queue. �� ��65 on 104
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Mutual Exclusion Algorithm

A site s enters the critical section (CS) as follows:

� If a new request arrives with a timestamp smaller than the request
at the head of the queue, an ”Inquire” message is sent to the
process whose request is at the head of the queue and waits for a
”Yield” or ”Relinquish” message.

� When a site s receives an ”Inquire” message, it acts as follows:
� If s has acquired all of its necessary replies to access the CS, then it

simply ignores the ”Inquire” message and proceeds normally and sends
a ”Relinquish” message after exiting the CS.

� If s has not yet collected enough replies from its quorum, then it sends
a ”Yield” message to the inquiring site.

� When a site gets the ”Yield” message, it puts the pending request
(on behalf of which the ”Inquire” message was sent) at the head of
the queue and sends a ”Reply” message to the requestor. �� ��66 on 104
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Correctness proof

Mutual exclusion is guaranteed because the set of quorums satisfy the
Intersection property.

� Consider a coterie C which consists of quorums {1, 2, 3}, {2, 4, 5}
and {4, 1, 6}.

� Suppose nodes 3, 5 and 6 want to enter CS, and they send
requests to sites (1, 2), (2, 4) and (1, 4), respectively.

� Suppose site 3’s request arrives at site 2 before site 5’s request. In
this case, site 2 will grant permission to site 3’s request and reject
site 5’s request.

� Similarly, suppose site 3’s request arrives at site 1 before site 6’s
request. So site 1 will grant permission to site 3’s request and
reject site 6’s request.

�� ��67 on 104



Distributed Computing: Principles, Algorithms, and Systems

Correctness proof

Mutual exclusion is guaranteed because the set of quorums satisfy the
Intersection property.

� Since sites 5 and 6 did not get consent from all sites in their
quorums, they do not enter the CS.

� Since site 3 alone gets consent from all sites in its quorum, it
enters the CS and mutual exclusion is achieved.
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Token-Based Algorithms

� In token-based algorithms, a unique token is shared among the
sites.

� A site is allowed to enter its CS if it possesses the token.

� Token-based algorithms use sequence numbers instead of
timestamps. (Used to distinguish between old and current
requests.)
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Suzuki-Kasami’s Broadcast Algorithm

� If a site wants to enter the CS and it does not have the token, it
broadcasts a REQUEST message for the token to all other sites.

� A site which possesses the token sends it to the requesting site
upon the receipt of its REQUEST message.

� If a site receives a REQUEST message when it is executing the CS,
it sends the token only after it has completed the execution of the
CS.
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Suzuki-Kasami’s Broadcast Algorithm

This algorithm must efficiently address the following two design issues:
(1) How to distinguish an outdated REQUEST message from a
current
REQUEST message:

� Due to variable message delays, a site may receive a token request
message after the corresponding request has been satisfied.

� If a site can not determined if the request corresponding to a token
request has been satisfied, it may dispatch the token to a site that
does not need it.

� This will not violate the correctness, however, this may seriously
degrade the performance.
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Suzuki-Kasami’s Broadcast Algorithm

This algorithm must efficiently address the following two design issues:
(2) How to determine which site has an outstanding request for
the CS:

� After a site has finished the execution of the CS, it must determine
what sites have an outstanding request for the CS so that the
token can be dispatched to one of them.
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Suzuki-Kasami’s Broadcast Algorithm

The first issue is addressed in the following manner:

� A REQUEST message of site Sj has the form REQUEST(j, n)
where n (n=1, 2, ...) is a sequence number which indicates that
site Sj is requesting its nth CS execution.

� A site Si keeps an array of integers RNi [1..N] where RNi [j ] denotes
the largest sequence number received in a REQUEST message so
far from site Sj .

� When site Si receives a REQUEST(j, n) message, it sets
RNi [j ] := max(RNi [j ], n).

� When a site Si receives a REQUEST(j, n) message, the request is
outdated if RNi [j ] > n.
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Suzuki-Kasami’s Broadcast Algorithm

The second issue is addressed in the following manner:

� The token consists of a queue of requesting sites, Q, and an array
of integers LN[1..N], where LN[j] is the sequence number of the
request which site Sj executed most recently.

� After executing its CS, a site Si updates LN[i ] := RNi [i ] to
indicate that its request corresponding to sequence number RNi [i ]
has been executed.

� At site Si if RNi [j ] = LN[j ] + 1, then site Sj is currently requesting
token.

�� ��74 on 104



Distributed Computing: Principles, Algorithms, and Systems

The Algorithm

Requesting the critical section

� (a) If requesting site Si does not have the token, then it increments
its sequence number, RNi [i ], and sends a REQUEST(i, sn)
message to all other sites. (”sn” is the updated value of RNi [i ].)

� (b) When a site Sj receives this message, it sets RNj [i ] to
max(RNj [i ], sn). If Sj has the idle token, then it sends the token
to Si if RNj [i ] = LN[i ] + 1.

Executing the critical section

� (c) Site Si executes the CS after it has received the token.
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The Algorithm

Releasing the critical section Having finished the execution of the
CS, site Si takes the following actions:

� (d) It sets LN[i] element of the token array equal to RNi [i ].

� (e) For every site Sj whose id is not in the token queue, it appends
its id to the token queue if RNi [j ] = LN[j ] + 1.

� (f) If the token queue is nonempty after the above update, Si
deletes the top site id from the token queue and sends the token to
the site indicated by the id.
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Correctness

Mutual exclusion is guaranteed because there is only one token in the
system and a site holds the token during the CS execution.

Theorem

A requesting site enters the CS in finite time.

Proof

� Token request messages of a site Si reach other sites in finite time.

� Since one of these sites will have token in finite time, site Si ’s
request will be placed in the token queue in finite time.

� Since there can be at most N-1 requests in front of this request in
the token queue, site Si will get the token and execute the CS in
finite time.
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Performance

� No message is needed and the synchronization delay is zero if a
site holds the idle token at the time of its request.

� If a site does not hold the token when it makes a request, the
algorithm requires N messages to obtain the token.
Synchronization delay in this algorithm is 0 or T.
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Raymond’s Tree-Based Algorithm

� This algorithm uses a spanning tree to reduce the number of
messages exchanged per critical section execution.

� The network is viewed as a graph, a spanning tree of a network is a
tree that contains all the N nodes.

� The algorithm assumes that the underlying network guarantees
message delivery. All nodes of the network are ’completely reliable.

� The algorithm operates on a minimal spanning tree of the network
topology or a logical structure imposed on the network.

� The algorithm assumes the network nodes to be arranged in an
unrooted tree structure.

� Next Figure shows a spanning tree of seven nodes A, B, C, D, E,
F, and G.

� Messages between nodes traverse along the undirected edges of the
tree. �� ��79 on 104
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Raymond’s Tree-Based Algorithm

Figure : A tree of 7 sites (Figure 4).
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Raymond’s Tree-Based Algorithm

� A node needs to hold information about and communicate only to
its immediate-neighboring nodes.

� Similar to the concept of tokens used in token-based algorithms,
this algorithm uses a concept of privilege.

� Only one node can be in possession of the privilege (called the
privileged node) at any time, except when the privilege is in transit
from one node to another in the form of a PRIVILEGE message.

� When there are no nodes requesting for the privilege, it remains in
possession of the node that last used it.
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The HOLDER Variables

� Each node maintains a HOLDER variable that provides information
about the placement of the privilege in relation to the node itself.

� A node stores in its HOLDER variable the identity of a node that it
thinks has the privilege or leads to the node having the privilege.

� For two nodes X and Y, if HOLDERX=Y, we could redraw the
undirected edge between the nodes X and Y as a directed edge
from X to Y.

� For instance, if node G holds the privilege, Figure 4 can be redrawn
with logically directed edges as shown in the Figure 5.
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The HOLDER Variables

� The shaded node in Figure 5 represents the privileged node.

� The following will be the values of the HOLDER variables of
various nodes:
HOLDERA=B
HOLDERB=C
HOLDERC=G
HOLDERD=C
HOLDERE=A
HOLDERF=B
HOLDERG=self
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The HOLDER Variables

Figure : Tree with logically directed edges, all pointing in a direction towards
node G - the privileged node. (Figure 5).
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The HOLDER Variables

� Now suppose node B that does not hold the privilege wants to
execute the critical section.

� B sends a REQUEST message to HOLDERB , i.e., C, which in turn
forwards the REQUEST message to HOLDERC , i.e., G.

� The privileged node G, if it no longer needs the privilege, sends the
PRIVILEGE message to its neighbor C, which made a request for
the privilege, and resets HOLDERG to C.

� Node C, in turn, forwards the PRIVILEGE to node B, since it had
requested the privilege on behalf of B. Node C also resets
HOLDERC to B.

� The tree in Figure 5 will now look as in Figure 6.
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The HOLDER Variables

Figure : Tree with logically directed edges, all pointing in a direction towards
node G - the privileged node. (Figure 6).
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Data Structures

Each node to maintains the following variables:
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Data Structures

� The value “self” is placed in REQUEST Q if the node makes a
request for the privilege for its own use.

� The maximum size of REQUEST Q of a node is the number of
immediate neighbors+1 (for “self”).

� ASKED prevents the sending of duplicate requests for privilege,
and also makes sure that the REQUEST Qs of the various nodes
do not contain any duplicate elements.
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The Algorithm

The algorithm consists of the following routines:

� ASSIGN PRIVILEGE

� MAKE REQUEST

ASSIGN PRIVILEGE:
This is a routine sends a PRIVILEGE message. A privileged node
sends a PRIVILEGE message if

� it holds the privilege but is not using it,

� its REQUEST Q is not empty, and

� the element at the head of its REQUEST Q is not “self.”
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ASSIGN PRIVILEGE

� A situation where “self” is at the head of REQUEST Q may occur
immediately after a node receives a PRIVILEGE message.

� The node will enter into the critical section after removing “self”
from the head of REQUEST Q. If the id of another node is at the
head of REQUEST Q, then it is removed from the queue and a
PRIVILEGE message is sent to that node.

� Also, the variable ASKED is set to false since the currently
privileged node will not have sent a request for the PRIVILEGE
message.
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MAKE REQUEST

This is a routine sends a REQUEST message. An unprivileged node
sends a REQUEST message if

� it does not hold the privilege,

� its REQUEST Q is not empty, i.e., it requires the privilege for
itself, or on behalf of one of its immediate neighboring nodes, and

� it has not sent a REQUEST message already.

� The variable ASKED is set to true to reflect the sending of the
REQUEST message. The MAKE REQUEST routine makes no
change to any other variables.
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MAKE REQUEST

� The variable ASKED will be true at a node when it has sent
REQUEST message to an immediate neighbor and has not
received a response.

� A node does not send any REQUEST messages, if ASKED is true
at that node. Thus the variable ASKED makes sure that
unnecessary REQUEST messages are not sent from the
unprivileged node.

� This makes the REQUEST Q of any node bounded, even when
operating under heavy load.
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Events

Below we show four events that constitute the algorithm.

�� ��93 on 104



Distributed Computing: Principles, Algorithms, and Systems

Events

A node wishes critical section entry:
If it is the privileged node, the node could enter the critical section
using the ASSIGN PRIVILEGE routine. Otherwise, it sends a
REQUEST message using the MAKE REQUEST routine.
A node receives a REQUEST message from one of its
immediate neighbors:
If this node is the current HOLDER, it may send the PRIVILEGE to a
requesting node using the ASSIGN PRIVILEGE routine. Otherwise, it
forwards the request using the MAKE REQUEST routine.
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Events

A node receives a PRIVILEGE message:
The ASSIGN PRIVILEGE routine could result in the execution of the
critical section at the node, or may forward the privilege to another
node. After the privilege is forwarded, the MAKE REQUEST routine
could send a REQUEST message to reacquire the privilege, for a
pending request at this node.
A node exits the critical section:
On exit from the critical section, this node may pass the privilege on
to a requesting node using the ASSIGN PRIVILEGE routine. It may
then use the MAKE REQUEST routine to get back the privilege, for
a pending request at this node.
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Events

Figure : Logical pattern of message flow between neighboring nodes A and
B. (Figure 7)
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Message Overtaking

� This algorithm does away with the use of sequence numbers. The
algorithm works such that message flow between any two
neighboring nodes sticks to a logical pattern as shown in the
Figure 7.

� If at all message overtaking occurs between the nodes A and B, it
can occur when a PRIVILEGE message is sent from node A to
node B, which is then very closely followed by a REQUEST
message from node A to node B.

� Such a message overtaking will not affect the operation of the
algorithm.

� If node B receives the REQUEST message from node A before
receiving the PRIVILEGE message from node A, A’s request will be
queued in REQUEST QB . Since B is not a privileged node, it will
not be able to send a privilege to node A in reply. �� ��97 on 104
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Message Overtaking

� When node B receives the PRIVILEGE message from A after
receiving the REQUEST message, it could enter the critical section
or could send a PRIVILEGE message to an immediate neighbor at
the head of REQUEST QB , which need not be node A. So
message overtaking does not affect the algorithm.
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Correctness

The algorithm provides the following guarantees:

� Mutual exclusion is guaranteed

� Deadlock is impossible

� Starvation is impossible

Mutual Exclusion

� The algorithm ensures that at any instant of time, not more than
one node holds the privilege.

� Whenever a node receives a PRIVILEGE message, it becomes
privileged. Similarly, whenever a node sends a PRIVILEGE
message, it becomes unprivileged.

� Between the instants one node becomes unprivileged and another
node becomes privileged, there is no privileged node. Thus, there
is at most one privileged node at any point of time in the network.�� ��99 on 104
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Deadlock is Impossible

When the critical section is free, and one or more nodes want to enter
the critical section but are not able to do so, a deadlock may occur.
This could happen due to any of the following scenarios:

� (1) The privilege cannot be transferred to a node because no node
holds the privilege.

� (2) The node in possession of the privilege is unaware that there
are other nodes requiring the privilege.

� (3) The PRIVILEGE message does not reach the requesting
unprivileged node.
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Deadlock is Impossible

� The scenario 1 can never occur in this algorithm because nodes do
not fail and messages are not lost.

� The logical pattern established using HOLDER variables ensures
that a node that needs the privilege sends a REQUEST message
either to a node holding the privilege or to a node that has a path
to a node holding the privilege. Thus scenario 2 can never occur.

� The series of REQUEST messages are enqueued in the REQUEST
Qs of various nodes such that the REQUEST Qs of those nodes
collectively provide a logical path for the transfer of the
PRIVILEGE message from the privileged node to the requesting
unprivileged nodes. So scenario 3 can never occur.
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Starvation is Impossible

� When a node A holds the privilege, and another node B requests
for the privilege, the identity of B or the id’s of proxy nodes for
node B will be present in the REQUEST Qs of various nodes in the
path connecting the requesting node to the currently privileged
node.

� So depending upon the position of the id of node B in those
REQUEST Qs, node B will sooner or later receive the privilege.

� Thus once node B’s REQUEST message reaches the privileged
node A, node B, is sure to receive the privilege.
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Cost and Performance Analysis

� In the worst-case, the algorithm requires (2 * longest path length
of the tree) messages per critical section entry.

� This happens when the privilege is to be passed between nodes at
either ends of the longest path of the minimal spanning tree.

� The worst possible network topology for this algorithm is where all
nodes are arranged in a straight line and the longest path length
will be N-1, and thus the algorithm will exchange 2*(N-1)
messages per CS execution.

� However, if all nodes generate equal number of REQUEST
messages for the privilege, the average number of messages needed
per critical section entry will be approximately 2N/3 because the
average distance between a requesting node and a privileged node
is (N+1)/3.
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Cost and Performance Analysis

� The best topology for the algorithm is the radiating star topology.
The worst case cost of this algorithm for this topology is
O(logK−1N).

� Trees with higher fan-outs are preferred over radiating star
topologies. The longest path length of such trees is typically O(log
N). Thus, on an average, this algorithm involves the exchange of
O(log N) messages per critical section execution.

� Under heavy load, the algorithm exhibits an interesting property:
“As the number of nodes requesting for the privilege increases, the
number of messages exchanged per critical section entry
decreases.”

� In heavy load, the algorithm requires exchange of only four
messages per CS execution.
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