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Introduction Issues and assumptions

Issues and assumptions

Be a set of tasks (work) interdependent and a fixed number of
processors. We want to determine the order of execution of the tasks
so that the execution of all the shortest time possible, knowing that
we can perform some tasks in parallel.
Assumptions applicable to a schedule:

� H1 - Static execution: we known set of tasks, their duration and
structure of dependency graphs (that is to say the set of pairs
(Ti ,Tj) such that Ti must be completed for Tj can begin).

� H2 - time invariant: the duration of a task is the same regardless
of the context in which it runs.

� H3 - indivisibility: the tasks are not pre-emptive (not
fragmentable).
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Introduction Issues and assumptions

Issues and assumptions

� H4 - immediate communication: there is no delay in
communications. Tj can begin as soon as Ti finished.

� H5 - number of processors is sufficient: whatever the proposed
scheduling, we have enough processors.

� H6 - lack of priority: there is no a priori means of setting
priorities on tasks.

� H7 - resources are sufficient : tasks are never blocked by lack of
resources (disk, memory, ...) and processors are powerful enough
to support them.

In the following, unless otherwise specified, the assumptions H2, H3,
H7 will be checked.
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Introduction System tasks

System tasks

Take

� a set of tasks {T1, · · · ,Tn} and a set of runtimes:
{ex(T1), · · · , ex(Tn)} without communication

� and a precedence relation << as
Ti << Tj if Ti must be completed for Tj can begin

We called precedence graph, a graph in which:

� nodes represent tasks;

� two fictitious tasks T0 said initial task, and Tn+1 called final task
with zero duration are added;

� nodes take the duration of the task which they are derived.
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Introduction System tasks
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4

T

T

T

T

T

T

T

T

T

T

0

1

2

5

7

9

8

3

4

6

0

0

1

23

1

3

4

2

�� ��9 on 47



Introduction Definition of a scheduling

Outline

Introduction
Issues and assumptions
System tasks
Definition of a scheduling
Dates earlier / later than
Optimality / minimality of a scheduling

Case of a static execution (H1) without communication (H4)

Static execution (H1) with communication (NO-H4)

�� ��10 on 47



Introduction Definition of a scheduling

System tasks

A scheduling on p processors is defined as an application Ord defined
on {T1, · · · ,Tn} to (N, [1, · · · , p]) associating each Ti the couple
(start(Ti ),processor(Ti )) where early (Ti ) is the start date of Ti and
processor(Ti ) the processor assigned as:

� if Ti << Tj then start(Tj)− start(Ti ) ≥ ex(Ti )

� si processeur(Tj)=processeur(Ti ) then
• start(Ti ) + ex(Ti ) ≤ start(Tj) or
• start(Tj) + ex(Tj) ≤ debut(Ti )

Condition 2 ensures that two tasks can not be carried out
simultaneously on the same processor.
Note simply the ti the start time (Ti ), also called potential.
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Introduction Dates earlier / later than

Dates earlier / later than

The previous example, calculate the minimum time before a task can
run
B(t1 = 0, p1) and (t2 = 0, p2) because nothing precedes these tasks
Bt3 =? Or 

t1 � t3 ⇔ t1 + ex(T1) ≤ t3

and
t2 � t3 ⇔ t2 + ex(T2) ≤ t3

(1)

whence t3 = max(t1 + ex(T1), t2 + ex(T2))
Bt8 = max(t3 + ex(T3), t6 + ex(T6)) =
max(max(t1 + ex(T1), t2 + ex(T2)), t6 + ex(T6)) = · · · = 10
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Introduction Dates earlier / later than

Dates earlier / later than

Bellmann’s algorithm implements this calculation :
t0 = 0; mark T0

While there are unmarked vertices do
whether Tj unlabeled vertex whose all predecessors Tk are marked

(there are at least one if there is a cycle in the graph) then
tj = max{tk + ex(Tk)}
mark Tj

Note in the example, T1 can start at t = 1 without affecting the
application execution time.
On the other side, as soon as its start date is greater than 1s, the
entire application is delayed.
Note that for Tn+1 = 9, we obtain t9 = 13s
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Introduction Dates earlier / later than

Dates earlier / later than

Critical Path: The minimum duration of the application is then the
maximum value of the paths leading from T0 to Tn+1. It is called the
critical path.
In the example ⇒ T0,T2,T4,T6,T8,T9 for 13s (which is the start
date of T9).
Dates earlier / later than Be called:

� earliest date ti for Ti , la maximum value of all the paths of T0 to
Ti (the earliest date ti for Ti is calculated so obvious by the
algorithm Bellmann).

� latest date di for Ti , tn+1 - the maximum value of all the paths of
Ti to Tn+1

�� ��15 on 47



Introduction Dates earlier / later than

Dates earlier / later than

Critical Path: The minimum duration of the application is then the
maximum value of the paths leading from T0 to Tn+1. It is called the
critical path.
In the example ⇒ T0,T2,T4,T6,T8,T9 for 13s (which is the start
date of T9).
Dates earlier / later than Be called:

� earliest date ti for Ti , la maximum value of all the paths of T0 to
Ti (the earliest date ti for Ti is calculated so obvious by the
algorithm Bellmann).

� latest date di for Ti , tn+1 - the maximum value of all the paths of
Ti to Tn+1

�� ��15 on 47



Introduction Dates earlier / later than

Dates earlier / later than

Indeed, the value of a path from Ti to Tn+1 is the time it takes at
least the corresponding branch to execute.

2i

Dtard
i

1 3 4 5 6 7 8 9

1 0 9 4 10 6 12 10 13

It is easy to show that for the task Ti of the critical path: ti = di
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Introduction Optimality / minimality of a scheduling

Optimality / minimality of a scheduling

� Total execution time of a task system: The total execution
time of execution of a system of tasks is the time between the start
of T0 (initial task) and the end of Tn+1 (final task )

� Average execution time of a task in a task system: The
average execution time of a task in a task system is the average
execution time of each task.

� Optimality / minimality of scheduling: A scheduling O is
minimal if for any number of processors, there is no other
scheduling whose total execution time is less than O. Any algorithm
that provides a scheduling as the execution time of the system is
equal to the execution time of the critical path is minimized.
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Introduction Optimality / minimality of a scheduling

Optimality / minimality of a scheduling

� A scheduling O is optimal if for a given number of processors, there
is no other scheduling whose total execution time is less than O.

� Indeed, it may not exist minimum solution. For example, if the
sum of the durations of tasks divided by the number of processors
is greater than the duration of the critical path, then there can not
exist a minimum solution.

� The purpose of a scheduling algorithm will be to find to any tasks
system, a minimum scheduling if possible, if not optimal. It will
also seek to minimize the average execution time of tasks.
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Case of a static execution (H1) without communication (H4) H5: we have enough processors

Case of a static execution (H1) without
communication (H4)

If any such scheduling a sufficient number of processors is available
that: ∀i , ti ≤ start(Ti ) ≤ di is minimal.
Thus, if we have enough processors, it will suffice to allocate at
random to the task Ti as soon as the earliest date ti is reached but
no later than that date at the latest di is reached, so that scheduling
is minimal.
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Case of a static execution (H1) without communication (H4) NO-H5: we have not enough processors

Case of a static execution (H1) without
communication (H4)

It then removes the hypothesis H6 often introducing priorities
between tasks and managing a list of runnable tasks (that is to say
those whose earliest date has passed without the task is started).
First solution in the general case
We apply the previous algorithm, and then when you have to assign a
processor becomes available, it assigns it to a next executable task
prioritization. If there are no priorities, we can take in order

� tasks whose dates are later than most outdated

� those with later dates are closest

� and finally those whose dates are earlier than most exceeded
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Case of a static execution (H1) without communication (H4) NO-H5: we have not enough processors

Case of a static execution (H1) without
communication (H4)

Unfortunately, this algorithm does not always provide the optimal
schedule (in fact, we can show that the calculation of the optimal
schedule is NP-complete). Are there special cases optimal algorithm?.
Case of an anti-tree: The graph is such that each task has only one
successor.
Example:

T7

T1
T2

T3

T5

T4

T6
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Case of a static execution (H1) without communication (H4) NO-H5: we have not enough processors

Case of a static execution (H1) without
communication (H4)

Case of an anti-tree
One can show that in this case, regardless of the number of
processors, scheduling the date later than is optimal.
Thus, in the example, if each task at the same time:
T1,T2,T3,T4,T5,T6,T7 is great. But also T2,T4,T3,T1,T6,T5,T7.
In addition, the construction of this list is O(n).
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Case of a static execution (H1) without communication (H4) NO-H5: we have not enough processors

Case of a static execution (H1) without
communication (H4)

Case of an arbitrary graph and 2 processors
We classify the tasks according to their dates at the latest. Then for
two tasks with the same date at the latest, we apply the following
rule:
Rule

If all successors of Ti is strictly included in the set of successors of
Tj then Tj must be a higher priority than Ti so that we can run the
successors of Tj that are not successors of Ti
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Case of a static execution (H1) without communication (H4) NO-H5: we have not enough processors

Case of a static execution (H1) without
communication (H4)

Case of an arbitrary graph and 2 processors
Example: Tasks unit length is assumed (for simplicity of illustration)
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Case of a static execution (H1) without communication (H4) NO-H5: we have not enough processors

Case of a static execution (H1) without
communication (H4)

For example, T6 and T7 are the same ”level”. As
succ(T6) ⊂ succ(T7), T7 will be a priority. Intuitively, performing T7

before T6 was more likely to allow the continuation of dependent
tasks of T7 that do not depend to T6: Example T5.
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Case of a static execution (H1) without communication (H4) NO-H5: we have not enough processors

Case of a static execution (H1) without
communication (H4)

Coffman and Graham algorithm, also said labeling algorithm
provides a list of priority which respects the previous rule and more
reflects the priorities successors. Durations of tasks do not matter.
Choose a terminal task Ti : ET[Ti] = 1
For k=2 to N do whether S = {TE1,TE2, · · · ,TEp} labelled all
tasks /* that is to say those who have no successors or whose
successors are all labeled*/

For every TEi of S do
Compute the list L(TEi) = descending ordered list of labels

successors of TEi
Determine TEm such that L(TEm) is less than or equal to all L (TEI)
in lexicographical order
ET[TEm] = k �� ��30 on 47



Case of a static execution (H1) without communication (H4) NO-H5: we have not enough processors

Case of a static execution (H1) without
communication (H4)

Coffman and Graham algorithm This algorithm provides a list of
tasks in increasing priority.
It then suffices to schedule using the priority and then scheduling is
optimal.
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Static execution (H1) with communication (NO-H4)

Static execution (H1) with communication (NO-H4)

Assumption Communication between tasks takes place only at the
end of the task for issuing the start of the receiving task. Thus, the
relation of precedence (see ”task system”) is assigned a
communication relationship: each arc in the precedence graph is
replaced by an arc of communication.
We will speak about communication graph.
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Static execution (H1) with communication (NO-H4) Communication and scheduling

Static execution (H1) with communication (NO-H4)

Assumption We introduce the communication function C (Ti ,Tj)
which gives the communication time between task Ti and task Tj :

C (Ti ,Tj) =

{
ci ,j if processeur(Ti ) 6= processeur(Tj)

0 if processeur(Ti ) = processeur(Tj)
(2)

In fact, C (Ti ,Tj) is ci ,j (given by the network) if Ti and Tj are not
on the same processeur, 0 otherwise (Considering they communicate
through shared memory and that this is ”instantaneous”).
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Static execution (H1) with communication (NO-H4) Communication and scheduling

Static execution (H1) with communication (NO-H4)

The relation of precedence becomes:

(Ti → Tj)⇒
{

sta(Tj) ≥ sta(Ti ) + ex(Ti ) if proc(Ti ) = proc(Tj)
sta(Tj) ≥ sta(Ti ) + ex(Ti ) + ci , j if proc(Ti ) 6= proc(Tj)

(3)
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Static execution (H1) with communication (NO-H4) Communication and scheduling

Static execution (H1) with communication (NO-H4)

Hence, one solution is to try to put on a single processor tasks that
communicate with it but it does not optimize a situation such as this:

T2

T1

T3

c=3

c=3

Indeed, a priori, we can start T2 and T3 at the same time. Indeed, it
is either T3 is on the same processor as T1 and then T2 must wait 3
seconds communication or vice versa is that T3 must wait. �� ��36 on 47



Static execution (H1) with communication (NO-H4) Communication and scheduling

Static execution (H1) with communication (NO-H4)

One solution is to duplicate T1: on two different processors (eg p1

and p2) T1 is started and once it ends, you can start T2 on one of
these two processors (eg p1) and T3 on other (p2 in this case).
As there is no satisfactory algorithm where tasks are not duplicated,
we assume sIn result they are.

�� ��37 on 47



Static execution (H1) with communication (NO-H4) number of processors is sufficient (H5)

Outline

Introduction

Case of a static execution (H1) without communication (H4)

Static execution (H1) with communication (NO-H4)
Communication and scheduling
number of processors is sufficient (H5)
Case of an arbitrary graph

�� ��38 on 47



Static execution (H1) with communication (NO-H4) number of processors is sufficient (H5)

Static execution (H1) with communication (NO-H4)

Case of a tree of precedence.
It is possible, as well as each task has a predecessor to associate a
processor with each leaf and execute without delay the path from the
root to the leaf.
Example:
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Static execution (H1) with communication (NO-H4) number of processors is sufficient (H5)

Static execution (H1) with communication (NO-H4)

Case of a tree of precedence.
gives us:

T7

Pr1

Pr2

Pr3

Pr4

T1 T2 T4

T1 T2 T5 T6

T1 T2 T5 T8

T1 T3
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Static execution (H1) with communication (NO-H4) Case of an arbitrary graph
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Static execution (H1) with communication (NO-H4) Case of an arbitrary graph

Static execution (H1) with communication (NO-H4)

Case of an arbitrary graph
Idea: transform the graph into a tree. For each task Ti , the critical
path leading to it is determined. But one task Tj , the predecessor of
Ti can be put on the same processor as Ti .
Hence the algorithm:
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Static execution (H1) with communication (NO-H4) Case of an arbitrary graph

Static execution (H1) with communication (NO-H4)

Case of an arbitrary graph
For each task Ti whose critical paths of all predecessors are
determined

� If Ti has no predecessor, it is considered that Ti can be placed on
any of the processors, s = ∅

� If Ti has a predecessor Tk , we consider that Ti will be the same
processor as its predecessor and calculates the earliest date with a
time of no communication, s = k

� If Ti is more than one predecessor
� 1. we calculate all paths leading to Ti assuming that all tasks are on a

different processor
� 2. whether Tsm , the predecessor task of Ti such that

T0 → · · · → · · ·Tsm → Ti is the critical path
� 3. we then choose to Ti and Tsm on the same processor, s = sm
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Static execution (H1) with communication (NO-H4) Case of an arbitrary graph

Static execution (H1) with communication (NO-H4)
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Static execution (H1) with communication (NO-H4) Case of an arbitrary graph

Static execution (H1) with communication (NO-H4)

Case of an arbitrary graph

� 4. can then recalculate the critical path (which can have
decreased) which is then the earliest date of Ti .

Example:
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Static execution (H1) with communication (NO-H4) Case of an arbitrary graph

Static execution (H1) with communication (NO-H4)

Case of an arbitrary graph
gives:

6

1 2 3 4 5 6 7 8 9Tache

D
i

s

0 0 4 4 3 7 6 6 11
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Static execution (H1) with communication (NO-H4) Case of an arbitrary graph

Static execution (H1) with communication (NO-H4)

Case of an arbitrary graph
Hence the tree of critical paths (in bold)
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Static execution (H1) with communication (NO-H4) Case of an arbitrary graph

Static execution (H1) with communication (NO-H4)

Case of an arbitrary graph
Hence the scheduling

communication

Pr1

Pr2

Pr3

Pr4

T1 T3 T7

T5T2

T1 T4 T8

T9T6
T3T1

It may be noted that this algorithm gives an allowance of 4 processors
while the width of the graph is 3. �� ��47 on 47


	Introduction
	Issues and assumptions
	System tasks
	Definition of a scheduling
	Dates earlier / later than
	Optimality / minimality of a scheduling

	Case of a static execution (H1) without communication (H4)
	H5: we have enough processors
	NO-H5: we have not enough processors

	Static execution (H1) with communication (NO-H4)
	Communication and scheduling
	number of processors is sufficient (H5)
	Case of an arbitrary graph




