
African University of Science and Technology

Fault tolerance

Pr. Ousmane THIARE

http://www.ousmanethiare.com

August 18, 2014



Outline

Introduction to Fault tolerance
Basic concepts
Faults Classification
Failure Models
Failure Masking by Redundancy

Replication of Data

Recovery

�� ��2 on 22



Introduction to Fault tolerance

Introduction to Fault tolerance

Fault tolerance is subject to much research in computer science. In
this section, we start with presenting the basic concepts related to
processing failures, followed by a discussion of failure models. The key
technique for handling failures is redundancy, which is also discussed.
For more general information on fault tolerance in distributed
systems, see, for example (Jalote, 1994).

�� ��3 on 22



Introduction to Fault tolerance Basic concepts

Outline

Introduction to Fault tolerance
Basic concepts
Faults Classification
Failure Models
Failure Masking by Redundancy

Replication of Data

Recovery

�� ��4 on 22



Introduction to Fault tolerance Basic concepts

Basic concepts

To understand the role of fault tolerance in distributed systems we
first need to take a closer look at what it actually means for a
distributed system to tolerate faults. Being fault tolerant is strongly
related to what are called dependable systems. Dependability is a
term that covers a number of useful requirements for distributed
systems including the following (Kopetz and Verissimo, 1993):

� Availability

� Reliability

� Safety

� Maintainability

�� ��5 on 22



Introduction to Fault tolerance Basic concepts

Availability

Definition

Availability is defined as the property that a system is ready to be used
immediately. In general, it refers to the probability that the system is
operating correctly at any given moment and is available to perform
its functions on behalf of its users. In other words, a highly available
system is one that will most likely be working at a given instant in time.

�� ��6 on 22



Introduction to Fault tolerance Basic concepts

Relability

Definition

Reliability refers to the property that a system can run continuously
without failure. In contrast to availability, reliability is defined in terms
of a time interval instead of an instant in time. A highly reliable sys-
tem is one that will most likely continue to work without interruption
during a relatively long period of time. This is a subtle but important
difference when compared to availability. If a system goes down for one
millisecond every hour, it has an availability of over 99.9999 percent,
but is still highly unreliable. Similarly, a system that never crashes but
is shut down for two weeks every August has high reliability but only
96 percent availability. The two are not the same.

�� ��7 on 22



Introduction to Fault tolerance Basic concepts

Safety

Definition

Safety refers to the situation that when a system temporarily fails to
operate correctly, nothing catastrophic happens. For example, many
process control systems, such as those used for controlling nuclear
power plants or sending people into space, are required to provide a
high degree of safety. If such control systems temporarily fail for only
a very brief moment, the effects could be disastrous.
Many examples from the past (and probably many more yet to come)
show how hard it is to build safe systems.

�� ��8 on 22



Introduction to Fault tolerance Basic concepts

Maintainability

Definition

Finally maintainability refers to how easy a failed system can be re-
paired. A highly maintainable system may also show a high degree
of availability, especially if failures can be detected and repaired auto-
matically. However, as we shall see later in this chapter, automatically
recovering from failures is easier said than done.

A system is said to fail when it cannot meet its promises. In
particular, if a distributed system is designed to provide its users with
a number of services, the system has failed when one or more of those
services cannot be (completely) provided. An error is a part of a
system’s state that may lead to a failure. For example, when
transmitting packets across a network, it is to be expected that some
packets have been damaged when they arrive at the receiver.

�� ��9 on 22



Introduction to Fault tolerance Faults Classification

Outline

Introduction to Fault tolerance
Basic concepts
Faults Classification
Failure Models
Failure Masking by Redundancy

Replication of Data

Recovery

�� ��10 on 22



Introduction to Fault tolerance Faults Classification

Faults Classification

Faults are generally classified as transient, intermittent, or permanent.
Transient faults occur once and then disappear. If the operation is
repeated, the fault goes away.
An intermittent fault occurs, then vanishes of its own accord, then
reappears, and so on. A loose contact on a connector will often cause
an intermittent fault. Intermittent faults cause a great deal of
aggravation because they are difficult to diagnose. Typically,
whenever the fault doctor shows up, the system works fine.
A permanent fault is one that continues to exist until the faulty
component is repaired. Burnt-out chips, software bugs, and disk head
crashes are examples of permanent faults.

�� ��11 on 22



Introduction to Fault tolerance Failure Models

Outline

Introduction to Fault tolerance
Basic concepts
Faults Classification
Failure Models
Failure Masking by Redundancy

Replication of Data

Recovery

�� ��12 on 22



Introduction to Fault tolerance Failure Models

Failure Models

A system that fails is not adequately providing the services it was
designed for. If we consider a distributed system as a collection of
servers that communicate with each other and with their clients, not
adequately providing services means that servers, communication
channels, or possibly both, are not doing what they are supposed to
do. However, a malfunctioning server itself may not always be the
fault we are looking for. If such a server depends on other servers to
adequately provide its services, the cause of an error may need to be
searched for somewhere else.

�� ��13 on 22



Introduction to Fault tolerance Failure Models

Failure Models

To get a better grasp on how serious a failure actually is, several
classification schemes have been developed. One such scheme is
shown in the figure below, and is based on schemes described in
(Cristian, 1991; and Hadzilacos and Toueg, 1993).

Figure : Different types of failures. �� ��14 on 22



Introduction to Fault tolerance Failure Models

Failure Models

A crash failure occurs when a server prematurely halts, but was
working correctly until it stopped. An important aspect with crash
failures is that once the server has halted, nothing is heard from it
anymore. A typical example of a crash failure is an operating system
that comes to a grinding halt, and for which there is only one
solution: reboot.
An omission failure occurs when a server fails to respond to a
request. Several things might go wrong. In the case of a receive
omission failure, the server perhaps never got the request in the first
place.
Another class of failures is related to timing. Timing failures occur
when the response lies outside a specified real-time interval.

�� ��15 on 22



Introduction to Fault tolerance Failure Models

Failure Models

A serious type of failure is a response failure, by which the server’s
response is simply incorrect. Two kinds of response failures may
happen. In the case of a value failure, a server provides the wrong
reply to a request. For example, a search engine that systematically
returns Web pages not related to any of the used search terms, has
failed.
The other type of response failure is known as a state transition
failure. This kind of failure happens when the server reacts
unexpectedly to an incoming request. For example, if a server receives
a message it cannot recognize, a state transition failure happens if no
measures have been taken to handle such messages.

�� ��16 on 22



Introduction to Fault tolerance Failure Models

Failure Models

The most serious are arbitrary failures, also known as Byzantine
failures. In effect, when arbitrary failures occur, clients should be
prepared for the worst. In particular, it may happen that a server is
producing output it should never have produced, but which cannot be
detected as being incorrect.

�� ��17 on 22



Introduction to Fault tolerance Failure Masking by Redundancy

Outline

Introduction to Fault tolerance
Basic concepts
Faults Classification
Failure Models
Failure Masking by Redundancy

Replication of Data

Recovery

�� ��18 on 22



Introduction to Fault tolerance Failure Masking by Redundancy

Failure Masking by Redundancy

If a system is to be fault tolerant, the best it can do is to try to hide
the occurrence of failures from other processes. The key technique for
masking faults is to use redundancy. Three kinds are possible:
information redundancy, time redundancy, and physical redundancy
(see also Johnson, 1995).
With time redundancy, an action is performed, and then, if need be, it
is per- formed again. With physical redundancy, extra equipment or
processes are added to make it possible for the system as a whole to
tolerate the loss or malfunctioning of some components. Physical
redundancy can thus be done either in hardware or in software.

�� ��19 on 22



Replication of Data

Replication of Data

Goal: - maintaining copies on multiple computers (e.g. DNS)
Requirements

� Replication transparency – clients unaware of multiple copies

� Consistency of copies

Benefits

� Performance enhancement

� Reliability enhancement

� Data closer to client

� Share workload

� Increased availability

� Increased fault tolerance

�� ��20 on 22



Replication of Data

Replication of Data

Constraints:

� How to keep data consistency (need to ensure a satisfactorily
consistent image for clients)

� Where to place replicas and how updates are propagated

� Scalability

�� ��21 on 22



Recovery

Recovery

� Once failure has occurred in many cases it is important to recover
critical processes to a known state in order to resume processing

� Problem is compounded in distributed systems

Two approaches

� Backward recovery, by use of checkpointing (global snapshot of
distributed system status) to record the system state but
checkpointing is costly (performance degradation)

� Forward recovery, attempt to bring system to a new stable state
from which it is possible to proceed (applied in situations where
the nature if errors is known and a reset can be applied)

�� ��22 on 22


	Introduction to Fault tolerance
	Basic concepts
	Faults Classification
	Failure Models
	Failure Masking by Redundancy

	Replication of Data
	Recovery



